
Anonymous Proxy Signature with
Restricted Traceability

Jiannan Wei

Joined work with Guomin Yang and Yi Mu
University of Wollongong



Outline

Introduction

Motivation and Potential Solutions

Anonymous Proxy Signature with Restricted Traceability

Formal Definition
Security Requirement
Our APSRT Construction
Adversary Type
Security Model
Security Proof

Conclusion



Introduction

Proxy Signature: When the original signer was not available or leave
and he/she will delegate the signing rights to proxy signature.

Original signer

Proxy signature

Verifier



Motivation

Signer anonymity: user privacy in many applications

We study signer anonymity for proxy signature which allows a
signer delegate the signing right to another signer, since the
proxy signer is the actual signer, we are interested in protecting
the proxy signer’s identity.



Ring and Group Signature

Figure: Ring signature

Group signature: the group manager is able to reveal the identity
of the signer for any valid group signature.

Ring signature: any ring members can sign messages on behalf of
the whole ring without reveal the identity of
his/her real identity.



Potential Solutions

In the proxy signature, traceability is an very important property, since
the proxy signer may abuse the signing right.

Combine a group signature with the proxy signature

Problem: The group manager has too strong a tracebility that
can trace any signature include the signature generated by honest
signer.

Use a ring signature combine with the proxy signature

Problem: It has nothing to restrict anonymity and is vulnerable
to malicious signers.



Traceable Ring Signature

Traceable Ring Signature: A ring signature with a “gentle”
anonymity restriction, which consider “one-more unforgeability” and
“double-spending traceability”.

Unforgeability

Anonymity

Publicly Traceability: dishonest signer can be publicly traced by
anyone.

Exculpability: it is against the framing attack, i.e. an honest user
cannot be framed by other users in the system.



Potential Solution

Combine the proxy signature with traceability ring signature

Advantage: Traceability ring signature is a tag-based signature, a
signer can sign messages only once per tag.

Problem: If the ring members sign messages twice with the same
tag, his identity can be publicly traced.



Contribution

Our anonymous proxy signature with restricted traceability

Allows the original signer to trace the dishonest signer and at the
same time protect the identity of the honest signer even against
the original signer.



Formal Definition

APSTR signature scheme consists following algorithms.

Parameter generation(PG): Param← PG(κ).
Key generation(KG): (Y, x)← KG(Param).

Delegation signing(DS): σ0 ← DS(mω, x0)

Delegation verification(DV): 0/1← DV(Y0,mω, σ0)

APS generation(PS): σ ← PS(m,Y0, L = (issue, YN ), xi, σ0),
where YN = {Y1, · · · , Yn}.
APS verification(PV): 0/1← PV(m,Y0, σ, L,mω)

Tracing(T R):
indep/linked/Yi ∈ YN ← T R((m,σ), (m′, σ′), L,mω, σ0)



Security requirement

1 Unforgeability

2 Anonymity

3 Restricted Traceability: If the proxy signer is dishonest, no
outsider is able to link signatures generated by the dishonest
proxy signer.

4 Exculpability



Anonymous Proxy Signature with Restricted
Traceability(APSRT):

General idea:

Challenge problem: develop new techniques that could disallow
outsiders to perform the trace operation.

We try to randomize each proxy signature so that only the
original signer or another proxy signer who has also been
delegated the same signing right has the secret to de-randomize
the proxy signature.

Our APSRT which can guarantee the anonymity against original
signer and the restricted traceability against outsider.



Our Construction of APSRT(1)

Parameter generation. Taking κ as input, outputs (G, q, P ), G
is a cyclic group of prime order q and P is a generator of G. Let
H0 : {0, 1} ∗G→ Zq, H : {0, 1}∗ → G, H ′ : {0, 1}∗ → G and
H ′′ : {0, 1}∗ → Zq. Param = (G, q, P,H0, H,H

′, H ′′).

Key generation. User i randomly selects xi ∈ Zq and computes
Yi = xiP . (xi, Yi) is the key pair of the user.

Delegation sign. The original signer first generates a warrant
mω. Original signer randomly chooses α ∈ Zq and computes
Wo = αP .



Our Construction of APSRT(2)

Delegation sign. Proxy signer picks another random r ∈ Zq and
computes R = rP , s = r + x0H0(mω, R,Wo) mod q. Finally,
the proxy signer sends (mω, α,R, s) to all the proxy signers in
U = {u1, u2, . . . , un} via a secure channel.

Delegation verification. Upon receiving (mω, α,R, s), the
proxy signer ui checks if sP = R+H0(mω, R,Wo = αP )Y0. If
it holds, the proxy signer ui computes his/her proxy signing
secret key pski = s+ xiH0(mω, R,Wo) =
r +H0(mω, R,Wo)(x0 + xi) mod q. For simplicity, let
pki = pskiP = R+H0(mω, R,Wo)(Y0 + Yi) denote the
corresponding proxy signing public key.

Proxy Sign To sign m ∈ {0, 1}∗ with respect to a tag
L = (issue, YN ) where YN are public keys of some proxy signers
described in the the warrant mω, the real proxy signer ui
proceeds as follows:



Our Construction of APSRT(3)

Proxy Sign

Randomly choose β ∈ Zq, compute F = H(L),
Wp = (Wp1,Wp2) = (αβP, βF ) and
σi = αβF + pskiF = (αβ + pski)F .
Set A0 = H ′(L,m) and A1 = 1

i
(σi −A0).

For all j 6= i, compute σj = A0 + jA1 ∈ G. Note that every
(j, logF (σj)) is on the line defined by (0, logF (A0)) and
(i, pski + αβ).
Generate (cN , zN ) based on a (non-interactive) zero-knowledge
proof of knowledge for the language

L = {(L,F, σN ) | ∃i ∈ N s.t. logP (pk′i) = logF (σi)}

where σN = (σ1, σ2, . . . , σn) and pk′i = Wp1 + pki as follows:



Our Construction of APSRT(4)

Proxy Sign
Generate (cN , zN ) based on a NIZK proof of knowledge for the
language L as follows:

1 Pick random ωi ← Zq and set ai = ωiP , bi = ωiF ∈ G.
2 Pick random zj , cj ← Zq , and set aj = zjP + cjpk

′
j ,

bj = zjF + cjσj ∈ G for every j 6= i.
3 Set c = H′′(L,m,A0, A1, aN , bN ) where aN = (a1, . . . , an) and
bN = (b1, . . . , bn).

4 Set ci = c− Σj 6=icj mod q and zi = ωi − ci(αβ + pski) mod q.
5 Return (cN , zN ), where cN = (c1, . . . , cn) and
zN = (z1, . . . , zn), as a proof for L.



Our Construction of APSRT(5)

Proxy Sign

Perform another (non-interactive) zero-knowledge proof of
knowledge for

L′ = {(F,Wp2,Wo,Wp1) | logWo
Wp1 = logF Wp2}

as follows

1 Pick random ω ← Zp and set ã = ωWo, b̃ = ωF ∈ G.

2 Set c̃ = H′′(L,m,A0, A1, ã, b̃).
3 Set z̃ = ω − c̃β.
4 Return (c̃, z̃) as a proof for L′.

Return σ = (A1, R,Wo,Wp, cN , zN , c̃, z̃) as the signature on
(L,m).



Our Construction of APSRT(6)

Verification To verify a proxy signature
σ = (A1, R,Wo,Wp, cN , zN , c̃, z̃) on message m and tag L,
check the following:

1 Parse L as (issue, YN ), and compute
pk′i = Wp1 + pki = Wp1 +R+H0(mω, R,Wo)(Y0 + Yi) for all
i ∈ N .

2 Set F = H(L) and A0 = H ′(L,m), and compute
σi = A0 + iA1 ∈ G for all i ∈ N .

3 Compute ai = ziP + cipk
′
i, bi = ziF + ciσi, for all i ∈ N .

4 Check that H ′′(L,m,A0, A1, aN , bN ) = Σi∈Nci mod q, where
aN = (a1, . . . , an) and bN = (b1, . . . , bn).

5 Compute ã = z̃Wo + c̃Wp1, b̃ = z̃F + c̃Wp2.
6 Check if H ′′(L,m,A0, A1, ã, b̃) = c̃.
7 If all the above checks are successful, outputs accept; otherwise,

outputs reject.



Our Construction of APSRT(7)

Tracing To check the relation between (m,σ) and (m′, σ′)
under the same warrant mω and the same tag L where
σ = (A1, R,Wo,Wp, cN , zN , c̃, z̃) and
σ′ = (A′1, R,Wo,W

′
p, c
′
N , z

′
N , c̃

′, z̃′), check the following:

1 Parse L as (issue, YN ). Set F = H(L) and A0 = H ′(L,m).
Compute σi = A0 + iA1 ∈ G for all i ∈ N . Since
Wp = (αβP, βF ), with the secret α, the original signer or any
proxy signer specified in the warrant mω can compute
σ̂i = σi − αβF = pskiF ∈ G for all i ∈ N . Do the same
operation for σ′ to get σ̂′i for all i ∈ N .

2 For all i ∈ N , if σ̂i = σ̂′i, store pki in TList, where TList is
initially empty.

3 Output pk if pk is the only entry in TList; “linked” if
TList = YN ; “indep” otherwise.



Our Construction of APSRT(8)
Correcness:

ziP + cipk
′
i

=
[
ωi − ci

[
αβ + (r +H0(mω, R,Wo)(x0 + xi))

]]
P + cipk

′
i

=ωiP − ci
[
αβ + r +H0(mω, R,Wo)(x0 + xi)

]
P+

ci[αβP +R+H0(mω, R,Wo)(Y0 + Yi)]

=ωiP

=ai

ziF + ciσi

=
[
ωi − ci

[
αβ + (r +H0(mω, R,Wo)(x0 + xi))

]]
F

+ ci(αβF + pskiF )

=ωiF − ci
(
αβ + (r +H0(mω, R,Wo)(x0 + xi))

)
F + ciαβF

+ ciF (r +H0(mω, R,Wo)(x0 + xi))

=ωiF

=bi



Our Construction of APSRT(9)

Correcness:

z̃Wo + c̃Wp1

= (ω − c̃β)αP + c̃αβP

= ωαP

= ã

z̃F + c̃Wp2

= (ω − c̃β)F + c̃βF

= ωF

= b̃



Adversary Type

Type I: Outsider. (Y0, Y1, . . . Yn)

Type II: Adversary is a proxy signer. (Y0, Y1, . . . Yn, x1, . . . xn)

Type III: Adversary is the original signer. (Y0, Y1, . . . Yn, x0)



Security Model

Unforgeability

Unforgeability against type II adversary
Unforgeability against type III adversary

Restricted Traceability

Tag-linkability
Untraceability against outsider

Anonymity against original signer

Exculpability



Unforgeability against proxy signer

Setup: C runs the algorithm to obtain the secret key and public
key pairs (x0, Y0), (x1, Y1), . . . , (xn, Yn) of the original signer
and n proxy signers. C then sends (Y0, Y1, . . . , Yn, xik)
(ik) ∈ {1, . . . , n} to the adversary AII .

Delegation signing query: AII can request a signature on a
warrant he chooses. In response, C outputs a signature σ on mω.

Output: Finally, AII outputs a target warrant m∗ω and σ∗ such
that

σ∗ is a valid delegation signature on m∗ω.
m∗ω has never been requested in delegation signature queries.



Untraceability against outsider

Setup: C runs the algorithm to obtain the (x1, Y1), . . . , (xn, Yn)
representing the keys of n proxy signers, which will be send to
adversary A.

Key selection: The adversary A outputs (Yi, Yj) as the two
target proxy signer’s public keys, let b ∈ {i, j} be a random
hidden bit. A sends the (Yi, Yj) to C.

Proxy signing query: A may access 3 signing oracles: Sigpskb
,

Sigpski
, Sigpskj

for the warrant mω and the tag, where

Sigpskb is the signing oracle with respect to proxy signer
b(b ∈ {i, j}) who has a valid proxy signing key pskb;
Sigpski(resp. Sigpskj ) is the signing oracle with respect to proxy
signer i who has a valid proxy signing key pski.

Output: Finally, A outputs a bit b′, A wins the game if b′ = b.



Theorems

Theorem
If there exists a type II adversary AII which can break the proposed
APSRT scheme, then we can construct another adversary B who can
use AII to solve DL problem.

Theorem
If there exists an adversary D who can correctly guess b with an
non-negligible advantage ε, we can construct another algorithm B
that can solve DDH problem.



Security Proof of Unforgeability 1

Proof. Given (P, x∗P ) for some unknown x∗ ∈ Zp as an instance of
DL problem. B can solve the DL problem with the help of AII . B
sets original signer’s public key Y0 = Y ∗ = x∗P , and generate the
keys for proxy signers honestly. Then B sends
(Y0, Y1, . . . Yn, x1, . . . xn) to adversary A.
H0 hash query: AII send the query (mω, R,Wo), B will check the
H0 list.

If query tuple ((mω, R,Wo), hi) in the Ho list, B returns hi to
AII .

Otherwise, B choose a random number hi ∈ Zp. Add
((mω, R,Wo), hi) to Ho list, return hi to AII .



Security Proof of Unforgeability 2

Delegation signing queries: AII send a query of mωi, B performs
the following:

Randomly choose c, s, α ∈ Z∗q and compute R = sP − cY ∗.
Set Wo = αP , H0 = (mω, R,Wo) = c and store
((mω, R,Wo), c) into the hash list H0.

Return σ0 = (α,R, s) as the delegation signing key for mω.

Output: A output σ0 = (α∗, R∗, s∗) which is a valid delegation
signing key for warrant m∗ω. m∗ω should not have been queried before.
Forking lemma: rewinding AII , B can obtain s∗1 = r + c∗1x

∗
0,

s∗2 = r + c∗2x
∗
0. c∗1 and c∗2 are two hash outputs of H0. B can output

x∗0 =
s∗1 − s∗2
c∗1 − c∗2

mod q

as the value of x∗ and the solution of DL problem.



Security Proof of Untraceability 1

Proof. If D can correctly guess b with ε, we can construct B who can
solve DDH problem.
Setup: B generate all the public and private keys by running the key
generation algorithm. B sends all the public keys to the adversary D.
Key selection: D outputs a mω, a tag L and two target proxy
signer’s public keys (Yi, Yj), i, j ∈ N . B then sets Wo = aP and
F = H(L) = bP , randomly selects r ∈ Zq and computes R = rP and
s = r + x0H0(mω, R,Wo). B also randomly selects b ∈ {i, j}, and
answer D’s queries as follows.



Security Proof of Untraceability 2

Hash queries: All the hash queries made by D are answered as in the
previous proof where B maintains a hash table for each hash oracle.
Proxy signing queries: When D makes a proxy signing query to
Sigpski

on message m, B randomly selects β ∈ Zq, and computes
Wp = (βWo, βF ) and σi = βzP + pskiF . β generate A0, A1 and
σj(j 6= i) by following the proxy signing algorithm. B also simulates
the NIZK proof for language L using the following simulator.



Security Proof of Untraceability 3

NIZK Simulator:

1 For all i ∈ N , uniformly pick up at random zi, ci ∈ Zp, and
compute ai = ziP + cipk

′
i, bi = ziF + ciσi ∈ G.

2 Set H ′′(L,m,A0, A1, aN , bN ) as c:=
∑

i∈N ci where
aN = (a1, a2, . . . , an), bN = (b1, b2, . . . , bN ).

3 Output (cN , zN ), where cN = (c1, c2, . . . , cN ) and
zN = (z1, z2, . . . , zN ).

B also simulates the NIZK proof (c̃, z̃) for language L′ honestly using
the knowledge of β. Finally, B returns
σ = (A1, R,Wo,Wp, cN , zN , c̃, z̃) to D.
Output: Finally, D outputs b′. If b′ = b, B outputs 1; Otherwise, B
outputs 0.



Conclusion

We put forward to the notion of APSRT.

We proposed a new concrete APSRT scheme which ensure the
requirement of anonymity against the original signer, restricted
untraceability against outsider.

We also provided formal security proof to demonstrate that our
APSRT is provable secure.



Thanks.
Any questions?


	Main Part

