Smooth Projective Hash Function and Its Applications

Rongmao Chen University of Wollongong

November 21, 2014

Rongmao Chen University of Wollongong Smooth Projective Hash Function and Its Applications

向下 イヨト イヨト

Literature

- Ronald Cramer and Victor Shoup.
 Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption.
 In EUROCRYPT, pages 13–25, 2002.
- Ronald Cramer and Victor Shoup.

A practical public key cryptosystems provably secure against adaptive chosen ciphertext attack. In *CRYPTO*, pages 13–25, 1998.

Shai Halevi and Yael Tauman Kalai. Smooth Projective Hashing and Two-Message Oblivious Transfer.

In Journal of Cryptology, pages 158-193, 2012.

Rosario Gennaro and Yehuda Lindell.
 A Framework for Password-Based Authenticated Key Exchange.
 In EUROCRYPT, pages 524-543, 2003.

Rongmao Chen University of Wollongong

Smooth Projective Hash Function and Its Applications

- **1** Part I: A Case Study
- **2** Part II: Smooth Projective Hash Function
- **O Part III: Applications of SPHF**

・ロン ・回と ・ヨン ・ヨン

Part I: A Case Study-ECP Problem

Rongmao Chen University of Wollongong Smooth Projective Hash Function and Its Applications

- - 4 回 ト - 4 回 ト

Case Study–Exponentiations Consistency Proving (ECP)

ECP-Problem

Rongmao Chen University of Wollongong Smooth Projective Hash Function and Its Applications

(4回) (4回) (4回)

ECP-Problem

Problem: Given g_1, g_2, X_1, X_2 , the prover wants to prove to the verifier that there is an r where $X_1 = g_1^r$, $X_2 = g_2^r$ without leaking the value of r to the verifier.

伺 ト イヨ ト イヨト

Case Study-Exponentiations Consistency Proving (ECP)

ECP-Problem

Problem: Given g_1, g_2, X_1, X_2 , the prover wants to prove to the verifier that there is an r where $X_1 = g_1^r$, $X_2 = g_2^r$ without leaking the value of r to the verifier.

Solution:

(4月) イヨト イヨト

Case Study-Exponentiations Consistency Proving (ECP)

ECP-Problem

Problem: Given g_1, g_2, X_1, X_2 , the prover wants to prove to the verifier that there is an r where $X_1 = g_1^r$, $X_2 = g_2^r$ without leaking the value of r to the verifier.

Solution:

Correctness: if $X_1 = g_1^r, X_2 = g_2^r$, then

$$X_1^{b_1}X_2^{b_2} = g_1^{rb_1}g_2^{rb_2} = (g_1^{b_1}g_2^{b_2})^r = Z^r$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Case Study–ECP Problem (cont'd)

Soundness? What if $X_1 = g_1^{r_1}, X_2 = g_2^{r_2}$, where $r_1 \neq r_2$? (Denote log = log_{g_1} and suppose that $log(g_2) = w$)

(ロ) (同) (E) (E) (E)

Case Study–ECP Problem (cont'd)

Soundness? What if $X_1 = g_1^{r_1}, X_2 = g_2^{r_2}$, where $r_1 \neq r_2$? (Denote $\log = log_{g_1}$ and suppose that $\log(g_2) = w$) Note that $Z = g_1^{b_1}g_2^{b_2} = g_1^{b_1+wb_2}$ which constraints (b_1, b_2) to satisfy

$$b_1 + wb_2 = \log(Z) \tag{1}$$

(ロ) (同) (E) (E) (E)

Case Study–ECP Problem (cont'd)

Soundness? What if $X_1 = g_1^{r_1}, X_2 = g_2^{r_2}$, where $r_1 \neq r_2$? (Denote $\log = log_{g_1}$ and suppose that $\log(g_2) = w$) Note that $Z = g_1^{b_1}g_2^{b_2} = g_1^{b_1+wb_2}$ which constraints (b_1, b_2) to satisfy $b_1 + wb_2 = \log(Z)$ (1)

If $X_1 = g_1^{r_1}, X_2 = g_2^{r_2}$, where $r_1 \neq r_2$, then $X_1^{b_1} X_2^{b_2} = g_1^{r_1 b_1} g_2^{r_2 b_2} = g_1^{r_1 b_1 + r_2 w b_2}$. So, for any $h \in \mathbb{G}$, we have $X_1^{b_1} X_2^{b_2} = h$ iff

$$r_1b_1 + r_2wb_2 = \log(h)$$
 (2)

Equations (1), (2) are linearly independent regarding b_1, b_2 . Hence,

$$\Pr[X_1^{b_1}X_2^{b_2} = h] = 1/\mathbb{G}$$

The distribution of $X_1^{b_1}X_2^{b_2}$ is uniform in \mathbb{G} .

Several Observations from ECP

- Designated Verifier. Only the verifier who has the trapdoor key (b₁, b₂) can do the verification.
- Correctness Assurance. The proof can be computed in two different ways by the prover (Z^r) and the verifier (X₁^{b₁}X₂^{b₂) respectively.}
- Soundness Assurance. The prover can only convince the verifier with negligible probability if the statement is false.

- 4 周 と 4 き と 4 き と … き

Several Observations from ECP

- Designated Verifier. Only the verifier who has the trapdoor key (b₁, b₂) can do the verification.
- Correctness Assurance. The proof can be computed in two different ways by the prover (Z^r) and the verifier (X₁^{b₁}X₂^{b₂}) respectively.
- Soundness Assurance. The prover can only convince the verifier with negligible probability if the statement is false.

Designated Verifier Non-Interactive Zero-Knowledge Proof, where the language is as follow,

$$L_{DDH} = \{ (u_1, u_2) : \exists r \in Z_p \ s.t.u_1 = g_1^r, u_2 = g_2^r \},$$

where $g_1, g_2 \in \mathbb{G}, \sharp(\mathbb{G}) = p$.

Part II: Smooth Projective Hash Function

Rongmao Chen University of Wollongong Smooth Projective Hash Function and Its Applications

(4月) (4日) (4日)

Definition of SPHF

Roughly speaking, the definition of SPHF requires the existence of a domain X and an underlying NP language $L \subseteq X$. And SPHF consists of a keyed hash pair **Hash**_{hk} : $X \to \Pi$, **ProjHash**_{hp} : $L \to \Pi_L$.

Informally, SPHF is defined by the following algorithms:

- HashKG(L): generates a hashing key hk for the language L;
- ProjKG(hk, L): derives the projection key hp from the hashing key hk; ¹
- **Hash**(*hk*, *L*, *C*): outputs the hash value of the world *C* from the hashing key *hk*;
- **ProjHash**(*hp*, *L*, *C*, *w*): outputs the hash value of the world *C* from the projection key *hp*, and the witness *w* that *C* ∈ *L*.

¹In some special SPHF, the projection key may depend on the word $C \in L$ $\mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A}$ Rongmao Chen University of Wollongong Smooth Projective Hash Function and Its Applications

Properties of SPHF

Normally, a SPHF has the following two properties:

• **Projection**: If a word $C \in L$ with w the witness, then

Hash(hk, L, C) = ProjHash(hp, L, C, w);

• Smoothness: If a word $C \in X/L$, then

$$(hp, \operatorname{Hash}(hk, L, C)) \stackrel{s}{\equiv} (hp, R)$$

where $\stackrel{s}{\equiv}$ means 'statistically indistinguishable', and $R \stackrel{\$}{\leftarrow} \Pi$ (hash value space).

Extension of the '**Smoothness**' Property: **Smoothness**₂: If there is another word $C' \in X/L$, then

$$(hp, \mathsf{Hash}(hk, L, C), \mathsf{Hash}(hk, L, C')) \stackrel{s}{\equiv} (hp, R, R')$$

where $R, R' \stackrel{\$}{\leftarrow} \Pi$.

(1日) (日) (日)

SPHF-1 for ECP Problem

Example: SPHF-1 for ECP Problem

SPHF-1 for ECP Problem

Domain X_{DDH}:

$$X_{DDH} = \{u_1, u_2 : \exists r_1, r_2 \; s.t. \; u_1 = g_1^{r_1}, u_2 = g_2^{r_2}\}$$

Language *L_{DDH}*:

$$L_{DDH} = \{u_1, u_2 : \exists r \ s.t. \ u_1 = g_1^r, u_2 = g_2^r\}$$

(ロ) (同) (E) (E) (E)

SPHF-1 for ECP Problem

Domain X_{DDH}:

$$X_{DDH} = \{u_1, u_2 : \exists r_1, r_2 \ s.t. \ u_1 = g_1^{r_1}, u_2 = g_2^{r_2}\}$$

Language L_{DDH}:

$$L_{DDH} = \{u_1, u_2 : \exists r \ s.t. \ u_1 = g_1^r, u_2 = g_2^r\}$$

Suppose the word $C = (X_1, X_2)$, then the SPHF on L_{DDH} is:

- HashKG(L_{DDH}): $hk = (b_1, b_2) \xleftarrow{\ } \mathbb{Z}_p^2$;
- **ProjKG**(hk, L_{DDH}): $hp = g_1^{b_1}g_2^{b_2}$;
- $\mathsf{Hash}(hk, L_{DDH}, C): \pi_{hk} = X_1^{b_1} X_2^{b_2};$
- **ProjHash**(hp, L_{DDH} , C, r): $\pi_{hp} = hp^r = (g_1^{b_1}g_2^{b_2})^r$.

SPHF-1 for ECP Problem

One can see that (from the analysis of ECP):

• **Projection** (for correctness): If $C = (X_1, X_2) \in L_{DDH}$ with r the witness, i.e., $C = (g_1^r, g_2^r)$ then

$$\pi_{hk} = X_1^{b_1} X_2^{b_2} = g_1^{b_1 r} g_2^{b_2 r} = \pi_{hp};$$

• Smoothness (for soundness): If $C \in X_{DDH}/L_{DDH}$, then

$$(hp, \pi_{hk}) \stackrel{s}{\equiv} (hp, R).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Smoothness₂ of SPHF-1?

・ロン ・回と ・ヨン ・ヨン

æ

Smoothness₂ of SPHF-1?

Now, suppose there is another word $C' \in X_{DDH}/L_{DDH}$, and

$$\pi'_{hk} \leftarrow \mathsf{Hash}(hk, L_{DDH}, C').$$

Question:

$$(hp, \pi_{hk}, \pi'_{hk}) \stackrel{s}{\equiv} (hp, R, R')$$
?

▲圖▶ ▲屋▶ ▲屋▶

Smoothness₂ of SPHF-1?

Now, suppose there is another word $C' \in X_{DDH}/L_{DDH}$, and

 $\pi'_{hk} \leftarrow \mathsf{Hash}(hk, L_{DDH}, C').$

Question:

$$(hp, \pi_{hk}, \pi'_{hk}) \stackrel{s}{\equiv} (hp, R, R') ?$$

Answer:

$$(hp, \pi_{hk}, \pi'_{hk}) \stackrel{s}{\equiv} (hp, R, R') \times$$

No smoothness₂!

SPHF-2 for ECP Problem

Suppose that $H: \{0,1\}^* \to \mathbb{Z}_p$, a collision-resistant hash function.

- HashKG(L_{DDH}): $hk = (a_1, a_2, b_1, b_2) \xleftarrow{\$} \mathbb{Z}_p^4$;
- **ProjKG**(*hk*, *L*_{DDH}): $hp = (hp_1, hp_2) = (g_1^{a_1}g_2^{a_2}, g_1^{b_1}g_2^{b_2});$
- Hash(*hk*, *L*_{DDH}, *C*): $\pi_{hk} = X_1^{a_1 + \alpha b_1} X_2^{a_2 + \alpha b_2}$, where $\alpha = H(X_1, X_2)$;
- **ProjHash**(hp, L_{DDH} , C, r): $\pi_{hp} = hp_1^r \cdot hp_2^{\alpha r}$.

- 本部 とくき とくき とうき

SPHF-2 for ECP Problem

Suppose that $H: \{0,1\}^* \to \mathbb{Z}_p$, a collision-resistant hash function.

- HashKG(L_{DDH}): $hk = (a_1, a_2, b_1, b_2) \xleftarrow{\$} \mathbb{Z}_p^4$;
- **ProjKG**(hk, L_{DDH}): $hp = (hp_1, hp_2) = (g_1^{a_1}g_2^{a_2}, g_1^{b_1}g_2^{b_2});$
- Hash(*hk*, *L*_{DDH}, *C*): $\pi_{hk} = X_1^{a_1 + \alpha b_1} X_2^{a_2 + \alpha b_2}$, where $\alpha = H(X_1, X_2)$;
- **ProjHash**(hp, L_{DDH} , C, r): $\pi_{hp} = hp_1^r \cdot hp_2^{\alpha r}$.

One can see that :

• **Projection**: If $C = (X_1, X_2) \in L_{DDH}$, then

$$\pi_{hk} = \pi_{hp};$$

• Smoothness₂: If $C \in X_{DDH}/L_{DDH}, C' \in X_{DDH}/L_{DDH}$, then

$$(hp, \pi_{hk}, \pi'_{hk}) \stackrel{s}{\equiv} (hp, R, R')$$

Proof for 'Smoothness₂' of SPHF-2:

(Denote $\log = \log_{g_1}$ and suppose that $\log(g_2) = w, C = (X_1, X_2) = (g_1^{r_1}, g_2^{r_2}), C' = (X_1', X_2') = (g_1^{r_1'}, g_2^{r_2'}), r_1 \neq r_2, r_1' \neq r_2'.$)

伺下 イヨト イヨト

Proof for 'Smoothness₂' of SPHF-2:

(Denote $\log = \log_{g_1}$ and suppose that $\log(g_2) = w, C = (X_1, X_2) = (g_1^{r_1}, g_2^{r_2}), C' = (X_1', X_2') = (g_1^{r_1'}, g_2^{r_2'}), r_1 \neq r_2, r_1' \neq r_2'.)$ Note that $hp = (hp_1, hp_2) = (g_1^{a_1}g_2^{a_2}, g_1^{b_1}g_2^{b_2})$ which constraints (a_1, a_2, b_1, b_2) to satisfy

$$a_1 + wa_2 = \log(hp_1) \tag{3}$$

$$b_1 + wb_2 = \log(hp_2) \tag{4}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Proof for 'Smoothness₂' of SPHF-2:

(Denote $\log = \log_{g_1}$ and suppose that $\log(g_2) = w, C = (X_1, X_2) = (g_1^{r_1}, g_2^{r_2}), C' = (X'_1, X'_2) = (g_1^{r'_1}, g_2^{r'_2}), r_1 \neq r_2, r'_1 \neq r'_2.)$ Note that $hp = (hp_1, hp_2) = (g_1^{a_1}g_2^{a_2}, g_1^{b_1}g_2^{b_2})$ which constraints

Note that $np = (np_1, np_2) = (g_1^{-1}g_2^{-1}, g_1^{-1}g_2^{-1})$ which constraints (a_1, a_2, b_1, b_2) to satisfy

$$a_1 + wa_2 = \log(hp_1) \tag{3}$$

$$b_1 + wb_2 = \log(hp_2) \tag{4}$$

Moreover, π_{hk}, π'_{hk} constraint (a_1, a_2, b_1, b_2) to satisfy

$$r_1a_1 + r_2wa_2 + \alpha r_1b_1 + \alpha r_2wb_2 = \log(\pi_{hk})$$
(5)

$$r_1'a_1 + r_2'wa_2 + \alpha'r_1'b_1 + \alpha'r_2'wb_2 = \log(\pi'_{hk})$$
(6)

Equations (3),(4),(5),(6) are linearly independent regarding a_1, a_2 , b_1, b_2 . Hence, the distribution of (π_{hk}, π'_{hk}) is uniform in \mathbb{G} .

Membership Indistinguishable Language

Let X be a set and a language $L \subseteq X$. Suppose that word $C \xleftarrow{\$} L$ and word $C \xleftarrow{\$} X/L$. Then we say L is a membership indistinguishable language if,

$$(C) \stackrel{c}{\equiv} (C')$$

where $\stackrel{c}{\equiv}$ means 'computationally indistinguishable'.

・ 同 ト ・ ヨ ト ・ ヨ ト

Membership Indistinguishable Language

Let X be a set and a language $L \subseteq X$. Suppose that word $C \xleftarrow{\$} L$ and word $C \xleftarrow{\$} X/L$. Then we say L is a membership indistinguishable language if,

 $(C) \stackrel{\mathsf{c}}{\equiv} (C')$

where $\stackrel{c}{\equiv}$ means 'computationally indistinguishable'. Language L_{DDH} :

$$L_{DDH} = \{u_1, u_2 : \exists r \ s.t. \ u_1 = g_1^r, u_2 = g_2^r\}$$

It is easy to see that the language L_{DDH} is a membership indistinguishable language following the DDH assumption.

Part III: Applications of SPHF

Rongmao Chen University of Wollongong Smooth Projective Hash Function and Its Applications

- 4 回 2 - 4 □ 2 - 4 □

CCA-Secure PKE from SPHFs

Suppose that,

- *HF*₁=(**HashKG**₁,**ProjKG**₁,**Hash**₁,**ProjHash**₁):a smooth projective hash function;
- *HF*₂=(**HashKG**₂,**ProjKG**₂,**Hash**₂, **ProjHash**₂): a smooth projective hash function; (smoothness₂)
- Both SPHFs are for the same language *L* which is a membership indistinguishable language.

・ 同 ト ・ ヨ ト ・ ヨ ト

Construction of CCA-secure PKE from SPHF (Cont'd)

Generic Construction

$$\begin{split} & \textbf{KeyGen}(\lambda): \ \textbf{HashKG}_1(L) \to hk_1, \textbf{ProjKG}_1(hk_1, L) \to \\ & hp_1, \textbf{HashKG}_2(L) \to hk_2, \textbf{ProjKG}_2(hk_2, L) \to hp_2 \text{ and set} \end{split}$$

$$pk = (hp_1, hp_2), sk = (hk_1, hk_2)$$

Enc(*m*): Pick $y \stackrel{\$}{\leftarrow} L$ together with a witness *w*. Compute

$$\pi_{hp_1} = \mathsf{ProjHash}_1(hp_1, L, y, w)$$

 $c = \pi_{hp_1} \oplus m$ $\pi_{hp_2} = \operatorname{ProjHash}_2(hp_2, L, (y, c), w)$

Set the ciphertext as (y, c, π_{hp_2}) . $Dec(y, c, \pi_{hp_2})$: If $Hash_2(hk_2, L, (y, c)) \neq \pi_{hp_2}$, output \perp . Otherwise, output

$$m = c \oplus \mathsf{Hash}_1(hk_1, L, y)$$

소리가 소문가 소문가 소문가

Security Analysis

1. Correctness:

 $c \oplus \mathsf{Hash}_1(hk_1, L, y) = c \oplus \mathsf{ProjHash}_1(hp_1, L, y, w) = c \oplus \pi_{hp_1} = m$

2. Security against CCA

Hard Problem: Given the language *L* and y^* , decide whether $y^* \in L$ or not.

イロト イポト イヨト イヨト

Security Proof for CCA-Secure PKE from SPHF

Reduction Map:

Rongmao Chen University of Wollongong

Smooth Projective Hash Function and Its Applications

Proof Analysis:

Case 1: $y^* \in L$. The simulation is indistinguishable from the actual attack;

Case 2: $y^* \in X/L$. For any decryption query input (y, c, π) where $y \notin L$, we should consider the following two cases:

- $(y, c) = (y^*, c^*)$ but $\pi \neq \pi^*$: Being rejected.
- $(y, c) \neq (y^*, c^*)$: By the smoothness₂ property of HF_2 , the value π is random and independent to the adversary. That is, the adversary can only output the correct π with negligible probability.

Due to the smoothness property of HF_1 , the value $Hash_1(hk_1, L, y^*)$ for $y^* \in X/L$ is uniformly random and hence perfectly hides the encrypted messages. (one-time pad)

(ロ) (同) (E) (E) (E)

An Instance: Cramer-Shoup Encryption

Cramer-Shoup Encryption

Let $\sharp \mathbb{G} = p, g_1, g_2 \in \mathbb{G}$ and $H : \{0, 1\}^* \to \mathbb{Z}_p$.

- KeyGen: $sk = (\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2) \in \mathbb{Z}_p^6, pk = (g, h, u, v)$ where $h = g_1^{\alpha_1} g_2^{\alpha_2}, u = g_1^{\beta_1} g_2^{\beta_2}, v = g_1^{\gamma_1} g_2^{\gamma_2}.$
- **Enc**_{*pk*}(*m*): $r \leftarrow_R \mathbb{Z}_p$, output

$$CT = \langle C_1, C_2, C_3, C_4 \rangle = \langle g_1^r, g_2^r, h^r m, u^r v^{r\theta} \rangle,$$

where $\theta = H(C_1, C_2, C_3)$.

• $Dec_{sk}(C_1, C_2, C_3, C_4)$: If $C_4 = C_1^{\beta_1 + \theta \gamma_1} C_2^{\beta_2 + \theta \gamma_2}$, where $\theta = H(C_1, C_2, C_3)$, output

$$m=C_3/(C_1^{\alpha_1}\cdot C_2^{\alpha_2}),$$

otherwise output \perp .

An Instance: Cramer-Shoup Encryption

Cramer-Shoup Encryption

Let $\sharp \mathbb{G} = p, g_1, g_2 \in \mathbb{G}$ and $H : \{0, 1\}^* \to \mathbb{Z}_p$.

- KeyGen: $sk = (\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2) \in \mathbb{Z}_p^6, pk = (g, h, u, v)$ where $h = g_1^{\alpha_1} g_2^{\alpha_2}, u = g_1^{\beta_1} g_2^{\beta_2}, v = g_1^{\gamma_1} g_2^{\gamma_2}.$
- **Enc**_{*pk*}(*m*): $r \leftarrow_R \mathbb{Z}_p$, output

$$CT = < C_1, C_2, C_3, C_4 > = < g_1^r, g_2^r, h^r m, u^r v^{r\theta} >,$$

where $\theta = H(C_1, C_2, C_3)$.

• $Dec_{sk}(C_1, C_2, C_3, C_4)$: If $C_4 = C_1^{\beta_1 + \theta \gamma_1} C_2^{\beta_2 + \theta \gamma_2}$, where $\theta = H(C_1, C_2, C_3)$, output

$$m=C_3/(C_1^{\alpha_1}\cdot C_2^{\alpha_2}),$$

otherwise output \perp .

Follow the framework using SPHF-1 and SPHF-2 on LDDH!

SPHF for Oblivious Transfer Construction

2-Message Oblivious Transfer Protocol from SPHF

Rongmao Chen University of Wollongong Smooth Projective Hash Function and Its Applications

(1日) (日) (日)

SPHF for Oblivious Transfer Construction

2-Message Oblivious Transfer Protocol from SPHF

Suppose that the sender takes as input a pair of strings γ_0, γ_1 and the receiver takes as input a choice bit *b*.

Here, the SPHF is on the language $L \subseteq X$ which is a membership indistinguishable language.

イロン イヨン イヨン イヨン

Security Analysis

- Receiver Security. Membership indistinguishable language;
 (x_b is indistinguishable from x_{1-b})
- Sender Security. Smoothness property; (y_{1-b} gives no information about γ_{1-b})
- Malicious Receivers. Might choose x₀, x₁ ∈ L? By requiring special word pair from L_{DDH}. (verifiable smoothness)

イロト イポト イラト イラト 一日

SPHF for Password-based Authenticated Key Exchange

A Framework for PAKE from SPHF

Rongmao Chen University of Wollongong Smooth Projective Hash Function and Its Applications

(4回) (1日) (日)

SPHF for Password-based Authenticated Key Exchange

A Framework for PAKE from SPHF

Suppose that the parties take as input a shared password w.

Here, $C_{\rho}(w, r)$ is a commitment to w using random-coins r (witness) and common string ρ .

Rongmao Chen University of Wollongong Smooth Projective Hash Function and Its Applications

Security Analysis

- **Membership Indistinguishable Language.** Implied by the hiding property of commitment;
- Passive Adversary. Given (c₁, hp₁, c₂, hp₂),

 $(\text{Hash}(hk_2, L, (c_2, w)), \text{Hash}(hk_1, L, (c_1, w)) \stackrel{c}{\equiv} (R_1, R_2),$

where $(R_1, R_2) \stackrel{\$}{\leftarrow} \Pi^2$.

Adaptive Adversary. Generates a commitment c' to a guessing password w', then (c', w') ∈ X/L and thus from the view of adversary (who only see hp and not hk)

$$(\mathsf{Hash}(hk, L, (c', w')) \stackrel{s}{\equiv} R,$$

where $R \stackrel{\$}{\leftarrow} \Pi$.

More about SPHF

Construction

- Quadratic Assumption;
- N-Residuosity Assumption;
- Derived from CPA-PKE, CCA-PKE;
- ...
- More applications
 - Extractable commitment;
 - Leakage-resilient PKE;
 - Lossy encryption;
 - Lossy trapdoor hash functions (LTDF);
 - ...

伺 ト イヨト イヨト

Thank you

Rongmao Chen University of Wollongong Smooth Projective Hash Function and Its Applications

→ 同 → → 三 →

- E

Thank you Any questions?

< E