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Part I: A Case Study-ECP Problem
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Case Study–Exponentiations Consistency Proving (ECP)

ECP-Problem

Problem: Given g1, g2,X1,X2, the prover wants to prove to the
verifier that there is an r where X1 = g r

1 , X2 = g r
2 without leaking

the value of r to the verifier.

Solution:

Correctness: if X1 = g r
1 ,X2 = g r

2 , then

X b1
1 X b2

2 = g rb1
1 g rb2

2 = (gb1
1 gb2

2 )r = Z r
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Case Study–ECP Problem (cont’d)

Soundness? What if X1 = g r1
1 ,X2 = g r2

2 , where r1 6= r2?

(Denote log = logg1 and suppose that log(g2) = w)

Note that Z = gb1
1 gb2

2 = gb1+wb2
1 which constraints (b1, b2) to

satisfy
b1 + wb2 = log(Z ) (1)

If X1 = g r1
1 ,X2 = g r2

2 , where r1 6= r2, then

X b1
1 X b2

2 = g r1b1
1 g r2b2

2 = g r1b1+r2wb2
1 .

So, for any h ∈ G, we have X b1
1 X b2

2 = h iff

r1b1 + r2wb2 = log(h) (2)

Equations (1), (2) are linearly independent regarding b1, b2. Hence,

Pr[X b1
1 X b2

2 = h] = 1/G

The distribution of X b1
1 X b2

2 is uniform in G.
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Case Study–ECP Problem

Several Observations from ECP

1 Designated Verifier. Only the verifier who has the trapdoor
key (b1, b2) can do the verification.

2 Correctness Assurance. The proof can be computed in two
different ways by the prover (Z r ) and the verifier (X b1

1 X b2
2 )

respectively.

3 Soundness Assurance. The prover can only convince the
verifier with negligible probability if the statement is false.

Designated Verifier Non-Interactive Zero-Knowledge Proof, where
the language is as follow,

LDDH = {(u1, u2) : ∃r ∈ Zp s.t.u1 = g r
1 , u2 = g r

2},

where g1, g2 ∈ G, ](G) = p.
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Part II: Smooth Projective Hash Function
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Smooth Projective Hash Function (SPHF)

Definition of SPHF

Roughly speaking, the definition of SPHF requires the existence of
a domain X and an underlying NP language L ⊆ X . And SPHF
consists of a keyed hash pair
Hashhk : X → Π,ProjHashhp : L→ ΠL.

Informally, SPHF is defined by the following algorithms:

HashKG(L): generates a hashing key hk for the language L;

ProjKG(hk, L): derives the projection key hp from the
hashing key hk; 1

Hash(hk, L,C ): outputs the hash value of the world C from
the hashing key hk;

ProjHash(hp, L,C ,w): outputs the hash value of the world C
from the projection key hp, and the witness w that C ∈ L.

1In some special SPHF, the projection key may depend on the word C ∈ L.
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Smooth Projective Hash Function (SPHF)

Properties of SPHF

Normally, a SPHF has the following two properties:

Projection: If a word C ∈ L with w the witness, then

Hash(hk, L,C )=ProjHash(hp, L,C ,w);

Smoothness: If a word C ∈ X/L, then

(hp,Hash(hk, L,C ))
s≡ (hp,R)

where
s≡ means ’statistically indistinguishable’, and R

$← Π
(hash value space).

Extension of the ’Smoothness’ Property:
Smoothness2: If there is another word C ′ ∈ X/L, then

(hp,Hash(hk, L,C ),Hash(hk, L,C ′))
s≡ (hp,R,R ′)

where R,R ′
$← Π.
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Example: SPHF-1 for ECP Problem

SPHF-1 for ECP Problem

Domain XDDH :

XDDH = {u1, u2 : ∃r1, r2 s.t. u1 = g r1
1 , u2 = g r2

2 }

Language LDDH :

LDDH = {u1, u2 : ∃r s.t. u1 = g r
1 , u2 = g r

2}

Suppose the word C = (X1,X2), then the SPHF on LDDH is:

HashKG(LDDH): hk = (b1, b2)
$← Z2

p;

ProjKG(hk, LDDH): hp = gb1
1 gb2

2 ;

Hash(hk, LDDH ,C ): πhk = X b1
1 X b2

2 ;

ProjHash(hp, LDDH ,C , r): πhp = hpr = (gb1
1 gb2

2 )r .

Rongmao Chen University of Wollongong Smooth Projective Hash Function and Its Applications



Example: SPHF-1 for ECP Problem

SPHF-1 for ECP Problem

Domain XDDH :

XDDH = {u1, u2 : ∃r1, r2 s.t. u1 = g r1
1 , u2 = g r2

2 }

Language LDDH :

LDDH = {u1, u2 : ∃r s.t. u1 = g r
1 , u2 = g r

2}

Suppose the word C = (X1,X2), then the SPHF on LDDH is:

HashKG(LDDH): hk = (b1, b2)
$← Z2

p;

ProjKG(hk, LDDH): hp = gb1
1 gb2

2 ;

Hash(hk, LDDH ,C ): πhk = X b1
1 X b2

2 ;

ProjHash(hp, LDDH ,C , r): πhp = hpr = (gb1
1 gb2

2 )r .

Rongmao Chen University of Wollongong Smooth Projective Hash Function and Its Applications



Example: SPHF-1 for ECP Problem

SPHF-1 for ECP Problem

Domain XDDH :

XDDH = {u1, u2 : ∃r1, r2 s.t. u1 = g r1
1 , u2 = g r2

2 }

Language LDDH :

LDDH = {u1, u2 : ∃r s.t. u1 = g r
1 , u2 = g r

2}

Suppose the word C = (X1,X2), then the SPHF on LDDH is:

HashKG(LDDH): hk = (b1, b2)
$← Z2

p;

ProjKG(hk, LDDH): hp = gb1
1 gb2

2 ;

Hash(hk, LDDH ,C ): πhk = X b1
1 X b2

2 ;

ProjHash(hp, LDDH ,C , r): πhp = hpr = (gb1
1 gb2

2 )r .

Rongmao Chen University of Wollongong Smooth Projective Hash Function and Its Applications



Example: SPHF-1 for ECP Problem (Cont’d)

SPHF-1 for ECP Problem

One can see that (from the analysis of ECP):

Projection (for correctness): If C = (X1,X2) ∈ LDDH with r
the witness, i.e., C = (g r

1 , g
r
2) then

πhk = X b1
1 X b2

2 = gb1r
1 gb2r

2 = πhp;

Smoothness (for soundness): If C ∈ XDDH/LDDH , then

(hp, πhk)
s≡ (hp,R).
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Smoothness2 of SPHF-1?

Smoothness2 of SPHF-1?

Now, suppose there is another word C ′ ∈ XDDH/LDDH , and

π′hk ← Hash(hk , LDDH ,C
′).

Question:
(hp, πhk , π

′
hk)

s≡ (hp,R,R ′) ?

Answer:
(hp, πhk , π

′
hk)

s≡ (hp,R,R ′) ×

No smoothness2!
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New SPHF-2 for ECP Problem

SPHF-2 for ECP Problem

Suppose that H : {0, 1}∗ → Zp, a collision-resistant hash function.

HashKG(LDDH): hk = (a1, a2, b1, b2)
$← Z4

p;

ProjKG(hk, LDDH): hp = (hp1, hp2) = (ga1
1 ga2

2 , g
b1
1 gb2

2 );

Hash(hk, LDDH ,C ): πhk = X a1+αb1
1 X a2+αb2

2 , where
α = H(X1,X2);

ProjHash(hp, LDDH ,C , r): πhp = hpr1 · hpαr2 .

One can see that :

Projection: If C = (X1,X2) ∈ LDDH , then

πhk = πhp;

Smoothness2: If C ∈ XDDH/LDDH ,C
′ ∈ XDDH/LDDH , then

(hp, πhk , π
′
hk)

s≡ (hp,R,R ′)
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New SPHF-2 for ECP Problem

Proof for ’Smoothness2’ of SPHF-2:

(Denote log = logg1 and suppose that log(g2) = w ,C =

(X1,X2) = (g r1
1 , g

r2
2 ),C ′ = (X ′1,X

′
2) = (g

r ′1
1 , g

r ′2
2 ), r1 6= r2, r

′
1 6= r ′2.)

Note that hp = (hp1, hp2) = (ga1
1 ga2

2 , g
b1
1 gb2

2 ) which constraints
(a1, a2, b1, b2) to satisfy

a1 + wa2 = log(hp1) (3)

b1 + wb2 = log(hp2) (4)

Moreover, πhk , π
′
hk constraint (a1, a2, b1, b2) to satisfy

r1a1 + r2wa2 + αr1b1 + αr2wb2 = log(πhk) (5)

r ′1a1 + r ′2wa2 + α′r ′1b1 + α′r ′2wb2 = log(π′hk) (6)

Equations (3),(4),(5),(6) are linearly independent regarding a1, a2,
b1, b2. Hence, the distribution of (πhk , π

′
hk) is uniform in G.
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Membership Indistinguishable Language

Membership Indistinguishable Language

Let X be a set and a language L ⊆ X . Suppose that word C
$← L

and word C
$← X/L. Then we say L is a membership

indistinguishable language if,

(C )
c≡ (C ′)

where
c≡ means ’computationally indistinguishable’.

Language LDDH :

LDDH = {u1, u2 : ∃r s.t. u1 = g r
1 , u2 = g r

2}

It is easy to see that the language LDDH is a membership
indistinguishable language following the DDH assumption.
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Part III: Applications of SPHF
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Construction of CCA-secure PKE from SPHF

CCA-Secure PKE from SPHFs

Suppose that,

HF1=(HashKG1,ProjKG1,Hash1,ProjHash1):a smooth
projective hash function;

HF2=(HashKG2,ProjKG2,Hash2, ProjHash2): a smooth
projective hash function; (smoothness2)

Both SPHFs are for the same language L which is a
membership indistinguishable language.
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Construction of CCA-secure PKE from SPHF (Cont’d)

Generic Construction

KeyGen(λ): HashKG1(L)→ hk1,ProjKG1(hk1, L)→
hp1,HashKG2(L)→ hk2,ProjKG2(hk2, L)→ hp2 and set

pk = (hp1, hp2), sk = (hk1, hk2)

Enc(m): Pick y
$← L together with a witness w . Compute

πhp1 = ProjHash1(hp1, L, y ,w)

c = πhp1 ⊕m

πhp2 = ProjHash2(hp2, L, (y , c),w)

Set the ciphertext as (y , c , πhp2).
Dec(y , c, πhp2): If Hash2(hk2, L, (y , c)) 6= πhp2 , output ⊥.
Otherwise, output

m = c ⊕Hash1(hk1, L, y)
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Construction of CCA-secure PKE from SPHF(Cont’d)

Security Analysis

1. Correctness:

c⊕Hash1(hk1, L, y) = c⊕ProjHash1(hp1, L, y ,w) = c⊕πhp1 = m

2. Security against CCA

Hard Problem: Given the language L and y∗, decide whether
y∗ ∈ L or not.
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Security Proof for CCA-Secure PKE from SPHF

Reduction Map:
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Security Proof for CCA-Secure PKE from SPHF

Proof Analysis:

Case 1: y∗ ∈ L. The simulation is indistinguishable from the
actual attack;
Case 2: y∗ ∈ X/L. For any decryption query input (y , c , π) where
y /∈ L, we should consider the following two cases:

(y , c) = (y∗, c∗) but π 6= π∗: Being rejected.

(y , c) 6= (y∗, c∗): By the smoothness2 property of HF2, the
value π is random and independent to the adversary. That is,
the adversary can only output the correct π with negligible
probability.

Due to the smoothness property of HF1, the value
Hash1(hk1, L, y

∗) for y∗ ∈ X/L is uniformly random and hence
perfectly hides the encrypted messages. (one-time pad)
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An Instance: Cramer-Shoup Encryption

Cramer-Shoup Encryption

Let ]G = p, g1, g2 ∈ G and H : {0, 1}∗ → Zp.

KeyGen: sk = (α1, α2, β1, β2, γ1, γ2) ∈ Z6
p, pk = (g , h, u, v)

where h = gα1
1 gα2

2 , u = gβ1
1 gβ2

2 , v = gγ1
1 gγ2

2 .

Encpk(m): r ←R Zp, output

CT =< C1,C2,C3,C4 >=< g r
1 , g

r
2 , h

rm, urv rθ >,

where θ = H(C1,C2,C3).

Decsk(C1,C2,C3,C4): If C4 = Cβ1+θγ1
1 Cβ2+θγ2

2 , where
θ = H(C1,C2,C3), output

m = C3/(Cα1
1 · C

α2
2 ),

otherwise output ⊥.

Follow the framework using SPHF-1 and SPHF-2 on LDDH !
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KeyGen: sk = (α1, α2, β1, β2, γ1, γ2) ∈ Z6
p, pk = (g , h, u, v)

where h = gα1
1 gα2

2 , u = gβ1
1 gβ2

2 , v = gγ1
1 gγ2

2 .

Encpk(m): r ←R Zp, output

CT =< C1,C2,C3,C4 >=< g r
1 , g

r
2 , h

rm, urv rθ >,

where θ = H(C1,C2,C3).

Decsk(C1,C2,C3,C4): If C4 = Cβ1+θγ1
1 Cβ2+θγ2

2 , where
θ = H(C1,C2,C3), output

m = C3/(Cα1
1 · C

α2
2 ),

otherwise output ⊥.

Follow the framework using SPHF-1 and SPHF-2 on LDDH !
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SPHF for Oblivious Transfer Construction

2-Message Oblivious Transfer Protocol from SPHF

Suppose that the sender takes as input a pair of strings γ0, γ1 and
the receiver takes as input a choice bit b.

Here, the SPHF is on the language L ⊆ X which is a membership
indistinguishable language.
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SPHF for Oblivious Transfer Construction

Security Analysis

Receiver Security. Membership indistinguishable language;
(xb is indistinguishable from x1−b)

Sender Security. Smoothness property; (y1−b gives no
information about γ1−b)

Malicious Receivers. Might choose x0, x1 ∈ L? By requiring
special word pair from LDDH . (verifiable smoothness)
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SPHF for Password-based Authenticated Key Exchange

A Framework for PAKE from SPHF

Suppose that the parties take as input a shared password w .

Here, Cρ(w , r) is a commitment to w using random-coins r
(witness) and common string ρ.

Rongmao Chen University of Wollongong Smooth Projective Hash Function and Its Applications



SPHF for Password-based Authenticated Key Exchange

A Framework for PAKE from SPHF

Suppose that the parties take as input a shared password w .

Here, Cρ(w , r) is a commitment to w using random-coins r
(witness) and common string ρ.

Rongmao Chen University of Wollongong Smooth Projective Hash Function and Its Applications



SPHF for Password-based Authenticated Key Exchange

Security Analysis

Membership Indistinguishable Language. Implied by the
hiding property of commitment;

Passive Adversary. Given (c1, hp1, c2, hp2),

(Hash(hk2, L, (c2,w)),Hash(hk1, L, (c1,w))
c≡ (R1,R2),

where (R1,R2)
$← Π2.

Adaptive Adversary. Generates a commitment c ′ to a
guessing password w ′, then (c ′,w ′) ∈ X/L and thus from the
view of adversary (who only see hp and not hk)

(Hash(hk, L, (c ′,w ′))
s≡ R,

where R
$← Π.

Rongmao Chen University of Wollongong Smooth Projective Hash Function and Its Applications



More on SPHF

More about SPHF

Construction
Quadratic Assumption;
N-Residuosity Assumption;
Derived from CPA-PKE, CCA-PKE;
...

More applications
Extractable commitment;
Leakage-resilient PKE;
Lossy encryption;
Lossy trapdoor hash functions (LTDF);
...
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Thank you

Any questions?
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