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Introduction

Identity-based Encryption:

Definition: Essentially public-key encryption in which the
public key of a user is some unique information about the
identity of the user (e.g., a user’s email address, current date,
physical IP address).

Figure : Identity-based Encryption
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Introduction

An identity-based encryption scheme IBE consists of four
polynomial-time algorithms (Setup, Extract, Encrypt, Decrypt):

Setup: Takes as input a security parameter 1κ and returns
the system parameters params and a master-key mk .

Extract: Takes as input an arbitrary identity ID ∈ {0, 1}∗ and
master key mk and returns a private key
dID ← Extract(ID,mk , params).

Encryption: Takes as input an ID and a message m ∈M,
and returns a ciphertext C ← Enc(ID,m, params).

Decryption: Takes as input a private key dID and a
cihpertext C ∈ C, and returns m← Dec(dID ,C ).
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Introduction

Brief History of IBE:

Shamir84’ Identity-Based Cryptosystems and Signature
Schemes.

BB’04 Eurocrypt: Efficient Selective-ID Identity Based
Encryption without Random Oracles.

BB’04 Crypto: Secure Identity Based Encryption without
Random Oracles.

Waters’05 Eurocrypt: Efficient IBE system in full model
without Random Oracles Mathematically similar to BB’04
(Crypto).

Gentry’06 Eurocrpt: Practical Identity-Based Encryption
without Random Oracles.
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Security Model

Figure : IBE Semantic Security
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Security Model

Figure : IBE CCA Security
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Security Model

Definition

An IBE system is (t, qID , ε)-semantically secure if all t-time
adversaries making at most qID private key queries have at most
an ε in breaking the scheme.

Definition

An IBE system is (t, qID , qC , ε)-CCA secure if all t-time CCA
adversaries making at most qID private key queries and qC chosen
ciphertext queries have at most an ε in breaking the scheme.
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Security Model

Let G,G1 be finite cyclic groups of prime order p and g be a
generator of G. We say G has admissible bilinear map
e : G×G→ G1 that satisfies:

1 Bilinearity: e(ga, gb) = e(g , g)ab, a, b ∈R Zp and g ∈ G.

2 Non-degenerate: e(g , g) 6= 1G1 .

3 Computability: e(g , g) is efficiently computable.
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Definition

Decisional Bilinear Diffie-Hellman (BDH) Assumption: Given
two tuples (g ,A = ga,B = gb,C = g c ,Z = e(g , g)abc) and
(g ,A = ga,B = gb,C = g c ,Z = e(g , g)z) for some randomly
a, b, c, z ∈ Zp, An adversary B has at least an ε advantage in
solving the decisional BDH problem if
|Pr[B(g , ga, gb, g c , e(g , g)abc =
1]− Pr[B(g , ga, gb, g c , e(g , g)z) = 1]| ≥ ε.

Definition

Computational Diffie-Hellman (BDH) Assumption: Given
g , ga, gb ∈ G for some random a, b ∈ Zp, An adversary B has at
least an ε advantage in solving the decisional CDH problem if
|Pr[B(g , ga, gb) = gab] ≥ ε.
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Waters’ Scheme

Let G be a group of prime order p. Let e : G×G→ G1 denote
the bilinear map and g be the generator of G.

Setup(1κ): params = (g , g1, g2, u
′, ~U), mk = gα2 .

KeyGen(v ,mk , params):
dv = (d1, d2) = (gα2 (u′

∏
i∈V ui )

r , g r ).

Encryption(M, v , params):
C = (C1,C2,C3) = (e(g1, g2)tM, g t , (u′

∏
i∈V ui )

t))

Decryption(C , dv):

C1
e(d2,C3)
d1,C2

= (e(g1, g2)tM)
e(g r ,(u′

∏
i∈V ui )

t)

e(gα
2 (u′

∏
i∈V ui )r ,g t) = M
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BB’ Scheme

Let G be a group of prime order p. Let e : G×G→ G1 denote
the bilinear map and g be the generator of G.

Setup(1κ): params = (g , g1, g2, h), mk = gα2 .

KeyGen(v ,mk , params): dv = (d1, d2) = (gα2 (g v
1 h)r , g r ).

Encryption(M, v , params):
C = (C1,C2,C3) = (e(g1, g2)tM, g t , (g v

1 h)t))

Decryption(C , dv):

C1
e(d2,C3)
e(d1,C2) = (e(g1, g2)tM)

e(g r ,(gv
1 h)t)

e(gα
2 (gv

1 h)r ,g t) = M
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Security Proof

Proof. Suppose there exists a (t, q, ε)-adversary A against the
scheme. We construct a simulator B to play the decisional BDH
game. The simulator will take BDH challenge
(g ,A = ga,B = gb,C = g c ,Z ) and outputs a guess β′, as to
whether the challenge is a BDH tuple. The simulator runs A
executing the following steps.
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Proof.
Setup: The simulator sets:

m = 4q,k ∈ (0, n),

x ′ and ~x = (xi ) where |~x | = n and x ′, xi ∈ (0,m − 1).

y ′ and ~y = (yi ) where |~y | = n and y ′, yi ∈R Zp.

Let X ∗ denote the pair (x ′, ~x).

Define three functions:

F (v) = (p −mk) + x ′ +
∑

i∈V xi ;

J(v) = y ′ +
∑

i∈V yi ;

K (v) =

{
0, if x ′ +

∑
i∈V xi ≡ 0 (mod m)

1, otherwise
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Proof.

g1 = A, g2 = B, u′ = gp−km+x ′

2 and ui = g xi
2 g yi

Phase 1: Suppose the adversary issues a query for an identity v .

1 If K (v) = 0, the simulator aborts and randomly chooses its
guess β′ of the challenger’s value β.

2 Otherwise, the simulator choose r ∈R Zp and construct the
key d = (d0, d1).

d0 = g
−J(v)
F (v)

1 (u′
∏

i∈V ui )
r ;

d1 = g
−1
F (v)

1 g r ;
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Proof.
Let r̄ = r − a

F (v) , then

d0 = g
−J(v)
F (v)

1 (u′
∏
i∈V

ui )
r

= g
−J(v)
F (v)

1 (g
F (v)
2 gJ(v))r

= ga
2 (g

F (v)
2 gJ(v))

− a
F (v) (g

F (v)
2 gJ(v))r

= ga
2 (u′

∏
i∈V

ui )
r− a

F (v)

= ga
2 (u′

∏
i∈V

ui )
r̄
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Security Proof

Proof.

d1 = g
−1
F (v)

1 g r

= g
r− a

F (v)

= g r̄

The simulator will be able to perform this computation iff
F (v) 6= 0 (mod p). For ease of analysis the simulator will only
continue (not abort) in the sufficient condition where K (v) 6= 0.
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Security Proof

Proof. Challenge: The adversary submits two messages
M0,M1 ∈ G1 and an identity v∗.

1 If x ′ +
∑

i∈V∗ xi 6= km, the simulator aborts and submits a
random guess for β′.

2 Otherwise, F (v∗) ≡ 0 (mod p) and the simulator will flip a
coin and construct the ciphertext T = (ZMγ ,C ,C

J(v∗)).

Suppose that the simulator was given a BDH tuple, that is
Z = e(g , g)abc . Then we have

T = (e(g , g)abcMγ , g
c , g cJ(v∗)) = (e(g1, g2)cMγ , g

c , (u′
∏
i∈V∗

ui )
c)
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Security Proof

Proof. We see that T is a valid encryption of Mγ . Otherwise, Z is
a random element of G1. In that case the ciphertext will give no
information about the simulator’s choice of γ.
Phase 2: Same as in Phase 1.
Guess: The adversary A outputs a guess γ′ of γ.
Artificial Abort: An adversary’s probability of success could be
correlated with the probability that the simulator needs to abort.
Since two different sets of q private key queries may the cause the
simulator to abort with different probabilities.
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Proof. In the worst case, Pr[γ = γ′| ¯abort]− 1
2 = 0 in the

simulation even if Pr[γ = γ′]− 1
2 = ε for some non-negligible ε.

Let ~v = v1, . . . , vq denote the private key queries made in phase 1
and phase 2 and let v∗ denote the challenge identity. Define the
function τ(X ′, ~v , v∗), where X ′ is a set of simulation values
x ′, x1, . . . , xn as

τ(X ′, ~v , v∗) =

{
0, if (∧qi=1K (vi ) = 1) ∧ (x ′ +

∑
i∈V∗ xi ) = km

1, otherwise

The function τ(X ′, ~v , v∗) will evaluate to 0 if the private key and
challenge queries ~v , v∗ will not cause an abort for a given choice of
simulation values X ′.
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Proof. Set η = PrX ′ [τ(X ′, ~v , v∗) = 0]. The simulator samples
O(ε−2ln(ε−1)λ−1ln(λ−1)) times the probability η by choosing a
random X ′ and evaluating τ(X ′, ~v , v∗) to compute an estimate η′.
We emphasize that the sampling does not involve running the
adversary again. Let λ = 1

8nq be the lower bound on the
probability of not aborting on any set of adversaries. Then if
η′ ≥ λ the simulator will abort with probability η′−λ

η′ and take a
random guess. Otherwise, the simulator will not abort.
If the simulator has not aborted at this point it will take check to
see if the adversary’s guess γ′ = γ. If γ′ = γ, the simulator
outputs a guess β′ = 1; Otherwise, outputs β = 0.
This concludes the description of the simulator.
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Proof. The first simulator is difficult to analyze directly since it
might abort before all of the queries are made. The author present
a second simulation to better describe the output distribution of
the first simulation.
Setup: Set mk = gα2 , choose X ∗, ~y as in the first simulation and
derives u′,U in the same way.
Phase 1: Use mk to respond to private key queries, in this way all
queries can be answered.
Challenge: Upon receiving the challenge M0,M1, the simulator
flips two coins β and γ. If β = 0, it encrypts a random message
and if β = 1 it encrypts Mγ .
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Proof.
Phase 2: Same as phase 1.
Guess: The simulator receives a guess γ′ from the adversary. At
this point the simulator has seen as the private key queries and the
challenge query (~v , v∗). It evaluates the function τ(X ′, ~v , v∗) and
aborts if it evaluates to 1, outputting a random guess of β′.
Artificial Abort: The last step is same as the first simulation.
This ends the description.
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Security Proof

Proof. The probabilities of the two simulators can be proved to be
equal with the following claims.
Claim 1: The probabilities Pr[β′ = β] are the same in both the
first simulation and second simulation.
Claim 2: The probabilities of the simulation not aborting by the
guess phase is at least λ = 1

8(n+1)q .
Claim 3: If A has an probability ε in breaking the scheme, then B
has at least a probability ε

32(n+1)q in breaking the BDH assumption.
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A Signature Scheme

Setup: pk = (g , g1, g2, u
′,U), sk = gα2 .

Signing: σM = (σ1, σ2) = (gα2 (u′
∏

i∈M)r+∆, g r+∆).

Verification: e(σ1, g)
?
= e(g1, g2)e(σ2, u

′∏
i∈M ui )

Theorem

The signature scheme is (t, q, ε) existentially unforgeable assuming
the decisional computational Diffie-Helman assumption holds.
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Conclusion

1 The first efficient and practical Identity-based encryption that
is secure in the full model without random oracles.

2 An efficient signature scheme.

Two interesting open problems remains to be solved:

1 How to construct an efficient IBE system that has short public
parameters without random oracles.

2 How to construct an IBE system with a tight reduction in
security.
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Thanks

Thank you
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