Efficient Ciphertext Policy Attribute Based Encryption Under Decisional Linear Assumption

PhD Candidate: Tran Viet Xuan Phuong

Supervision: Prof. Willy Susilo
Dr. Guomin Yang

Content

- Introduction
- Previous work
-Contribution
- Preliminaries
- Construction
-Conclusion

Introduction

The old communication model have not properties enough and effective to construct the security scheme with the access policy

A new variant of Cryptography to satisfy these properties

System

Ciphertext-Policy Attribute-Based Encryption (CP-ABE) [1] An encryptor makes a ciphertext associated with an access structure \boldsymbol{W} (policy).

A decryptor with a set of attribute S can decrypt a ciphertext if S satisfies \boldsymbol{W}

[1] Bethencourt, John and Sahai, Amit and Waters, Brent Ciphertext-Policy Attribute-Based Encryption, IEEE Symposium on Security and Privacy, 2007.

Previous Work

- Most current CP-ABE schemes incur large ciphertext size and encryption/decryption operations
- The length size depends on the number of attributes

	Encryption	Decryption	CTLength	Policy	Assumption	
CN(CSS 2007)	$(n+2) \mathrm{ex}$	$(n+1) \mathbf{p}$	$\left\|\mathbb{G}_{T}\right\|+(n+1)\|\mathbb{G}\|$	Non-monotone AND gate	DBDH	
BW(PKC, 2011)	$(2 t+2) \mathbf{e x}$	$(2 t+1) \mathbf{p}$	$\left\|\mathbb{G}_{T}\right\|+(2 t+1)\|\mathbb{G}\|$	Linear Structure	n-BDHE	
EM(IPSEC 2009)	$(t+2) e x$	$2 p+2 e x$	$\left\|\mathbb{G}_{T}\right\|+2\|\mathbb{G}\|$	Monotone(n, n) thresold scheme	DBDH	
zH (CSS 2010)	2ex	$2 t p+1$	$\left\|\mathbb{G}_{T}\right\|+2\|\mathbb{G}\|$	Non-monotone AND gate	n-DBDE	
HLR (PKC, 2010)	$(n+t+1) \mathrm{e}$	$3 p+\left(t^{2}\right) e x$	$\left\|\mathbb{G}_{T}\right\|+2\|\mathbb{G}\|$	Monotone(n,n) thresold scheme	aMSE-BDH	
CZD(ProvSec 2011)	3 ex	2p	$\left\|\mathbb{G}_{T}\right\|+2\|\mathbb{G}\|$	Non-monotone AND gate	n-DBHE	
					UNIVERSTTY OF WOLLONGONG	
1/28/2015	Seminar 16/01/2015					

EM(IPSEC 2009)	$(\boldsymbol{t}+2) \mathbf{e x}$	$2 \mathbf{p}+2 \mathbf{e x}$	$\left\|\mathbb{G}_{\boldsymbol{T}}\right\|+2\|\mathbb{G}\|$	Monotone(n,n) thresold scheme	DBDH

EM09 which admits only (n,n)-threshold policies

zH (CSS 2010)	2 ex	$2 t p+1$	$\left\|\mathbb{G}_{\boldsymbol{T}}\right\|+2\|\mathbb{G}\|$	Non-monotone AND gate	n-DBDE

ZH10 using non-monotone AND gate access structure, but the cost of decryption depends on the number of attributes

HLR (PKC, 2010)	$(n+t+1)$ ex	$3 p+\left(t^{2}\right) e x$	$\left\|\mathbb{G}_{T}\right\|+2\|\mathbb{G}\|$	Monotone (n, n) thresold scheme	aMSE-BDH

HLR10 (t, n) threshold structure, but both the cost of encryption and decryption depend on the number of attributes

CZD(ProvSec 2011)	3ex	$2 p$	$\left\|\mathbb{G}_{T}\right\|+2\|\mathbb{G}\|$	Non-monotone AND gate	n-DBDE

CZD11 Short ciphertext but applying n-BDHE is not a standard assumption to satisfy the security of PKC scheme compare with DBDH assumption

Contribution

- Proposed an efficient CP-ABE Scheme:
- Constant ciphertext length with short size.
- Constant computation costs.
- Using non-monotone AND gates with wildcards to construct access structure.
- Apply the standard assumption in security proof.

Preliminaries

Bilinear Map

Bilinearity

p : prime number
$\mathbb{G}, \mathbb{G}_{T}:$ groups with order p
A bilinear map $\boldsymbol{e}: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_{\boldsymbol{T}}$

$$
\begin{aligned}
& \text { For all } g \in \mathbb{G}, a, b \in \mathbb{Z}_{p}, \\
& e\left(g^{a}, g^{b}\right)=e(g, g)^{a b}
\end{aligned}
$$

Non-degeneracy

$$
\mathrm{e}(g, g) \neq 1
$$

Desicional Linear Assumption (DLIN)

Definition 1: We say that the decisional Linear assumption holds if no polynomial time algorithm has a nonnegligible advantage in solving the DLIN problem.
$g, g^{a}, g^{b}, g^{a c}, g^{d}, T \in \mathbb{G}^{6} \quad$ distinguish
\mathcal{B} : polynomial time algorithm

$$
T=g^{b(c+d)}
$$

$\boldsymbol{T} \in \mathbb{G}($ random element $)$
$a, b, c, d, r \in_{R} \mathbb{Z}_{p}, \epsilon(k)$: negligible in security parameter k

$$
\left|\operatorname{Pr}\left[\mathcal{B}\left(g, g^{a}, g^{b}, g^{a c}, g^{d}, T=g^{b(c+d)}\right)=1\right]-\operatorname{Pr}\left[\mathcal{B}\left(g, g^{a}, g^{b}, g^{a c}, g^{d}, T=r\right)\right]\right| \leq \epsilon(k)
$$

Preliminaries

security Model of CP-ABE
Parameter Master Key

Preliminaries

AND gate structure with wildcards

Let $U=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ be the Universe of attributes
Let $W=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ be and AND-gate access policy.

	$\boldsymbol{A t t}_{\mathbf{1}}$	$\boldsymbol{A t t}_{\mathbf{2}}$	$\boldsymbol{A t t}_{\mathbf{3}}$	$\boldsymbol{A t t}_{\mathbf{4}}$
Positive	A_{1}	A_{2}	A_{3}	A_{4}
Negative	A_{5}	A_{6}	A_{7}	A_{8}
Wildcard	A_{9}	A_{10}	A_{11}	A_{12}

Attributes	Att $_{1}$	Att $_{2}$	Att $_{3}$	Att $_{4}$
Description	CS	EE	Faculty	Student
Alice	+	-	-	+
Bob	-	+	+	-
Carol	+	+	+	-

Alice is a student in the CS department;
Bob is a faculty in the EE department;
Carol is a faculty holding a joint position in the EE and CS department

W_{1}	+	-	-	+
W_{2}	+	-	$*$	$*$

W_{1} can be satisfied by all the CS students, W_{2} can be satisfied by all CS people.

Preliminaries

Viète's formulas

$$
\begin{array}{lr}
\vec{w}=\left(w_{1}, w_{2}, *, . ., *, w_{L}\right) & J=\left\{j_{1}, j_{2}, \ldots, j_{n}\right\} \subset\{1, \ldots, L\} \\
\vec{z}=\left(z_{1}, z_{2}, \ldots, z_{L}\right) & \text { positions wildcard in } \vec{w}
\end{array}
$$

$w_{i}=z_{i} \vee w_{i}=*$ for $i=1, \ldots, L \longrightarrow \sum_{i=1, i \notin J}^{L} w_{i} \prod_{j \in J}(i-j)=\sum_{i=1}^{L} z_{i} \prod_{j \in J}(i-j)$
$\prod_{j \in J}(i-j)=\sum_{k=0}^{n} \lambda_{k} i^{k}, \lambda_{k}$ coefficients of $J \longrightarrow \sum_{i=1, i \notin J}^{L} w_{i} \prod_{j \in J}(i-j)=\sum_{k=0}^{n} \lambda_{k} \sum_{i=1}^{L} z_{i} i^{k}$
Hiding computation, $H_{i} \in_{R} G \longrightarrow \prod_{i=1, i \notin J}^{L} H_{i}^{w_{i} \Pi_{j \in J}(i-j)}=\prod_{k=0}^{n}\left(\prod_{i=1,}^{L} H_{i}^{Z_{i} i^{k}}\right)^{\lambda_{k}}$

Using Viète formulas, construct $\lambda_{k}: \lambda_{k}=(-1)^{k} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} j_{i_{1}} j_{i_{2}} \cdots j_{i_{k}}, 0 \leq k \leq n$

Construction

$\operatorname{Setup}\left(1^{k}\right)$

Assume that we have L attributes in the universe, and each attribute has two possible values: positive and negative.
In addition, we also consider wildcard (meaning "'don't care") in access structures.
Let N_{1}, N_{2}, N_{3} be three upper bounds defined as follows:

- $N_{1} \leq L$: the maximum number of wildcard in an access structure;
- $N_{2} \leq L$: the maximum number of positive attribute in an attribute set S;
- $N_{3} \leq L$: the maximum number of negative attribute in an attribute set S.
--Generates bilinear groups $\mathbb{G}, \mathbb{G}_{T}$ with order p,
--Selects two random generators $V_{0}, V_{1}, g \in \mathbb{G}$.
--Randomly choose $\alpha, \beta_{1}, \beta_{2}, a_{1}, \ldots, a_{L} \in_{R} \mathbb{Z}_{p}$,
$->$ Set $\Omega_{1}=e\left(g, V_{0}\right)^{\alpha \beta_{1}} e\left(g, V_{1}\right)^{\alpha \beta_{1}}, \Omega_{2}=e\left(g, V_{0}\right)^{\alpha \beta_{2}} e\left(g, V_{1}\right)^{\alpha \beta_{2}}$.
---Let $A_{i}=g^{a_{i}}$ for $i=1, \ldots, L$.

$$
\begin{aligned}
\mathrm{PK} & =\left(e, g, \Omega_{1}, \Omega_{2}, g^{\alpha}, V_{0}, V_{1}, A_{1}, \ldots, A_{L}\right) \\
\mathrm{MSK} & =\left(\alpha, \beta_{1}, \beta_{2}, a_{1}, \ldots, a_{L}\right)
\end{aligned}
$$

Encryption(W, M,PK)

Suppose that the access structure W contains:

- $n_{1} \leq N_{1}$ wildcards which occur at positions $J=\left\{w_{1}, \ldots, w_{n_{1}}\right\}$;
- $n_{2} \leq N_{2}$ positive attributes which occur at positions $V=\left\{v_{1}, \ldots, v_{n_{2}}\right\}$;
- $n_{3} \leq N_{3}$ negative attributes which occur at positions $Z=\left\{z_{1}, \ldots, z_{n_{3}}\right\}$.

$$
\lambda_{k}=(-1)^{k} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} j_{i_{1}} j_{i_{2}} \ldots j_{i_{k}}, 0 \leq k \leq n
$$

Compute for the wildcard positions $\left\{w_{j}\right\}\left(j=0,1,2, \cdots, n_{1}\right)\left\{\lambda_{w_{j}}\right\}$ and set $t_{w}=\sum_{j=0}^{n_{1}} \lambda_{w_{j}}$. The encryption algorithm then chooses $r_{1}, r_{2} \in_{R} \mathbb{Z}_{p}$, and create ciphertext as:

$$
\mathrm{CT}=\left(C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, J=\left\{w_{1}, w_{2}, \ldots, w_{n_{1}}\right\}\right)
$$

KeyGen(MSK,S)

Suppose that a user joins the system with the attribute list L, which contains:

- $n_{2}^{\prime} \leq N_{2}$ positive attributes which occur at positions $V^{\prime}=\left\{v_{1}^{\prime}, \ldots, v_{n_{2}^{\prime}}^{\prime}\right\}$.
- $n_{3}^{\prime} \leq N_{3}$ negative attributes which occur at positions $Z^{\prime}=\left\{z_{1}^{\prime}, \ldots, z_{n_{3}^{\prime}}^{\prime}\right\}$.

By means of the Viète's formulas,

- for all the positive positions $\left\{v_{k}^{\prime}\right\}\left(k=0,1,2, \cdots, n_{2}^{\prime}\right)$, calculate $\left\{\lambda_{v_{k}^{\prime}}\right\}$ and set $t_{v}^{\prime}=$ $\sum_{k=0}^{n_{2}} \lambda_{v_{k}^{\prime}} ;$
- for all the negative positions $\left\{z_{\tau}^{\prime}\right\}\left(\tau=0,1,2, \cdots, n_{3}^{\prime}\right)$, calculate $\left\{\lambda_{z^{\prime}}\right\} \$$ and set

Chooses $S \in_{R} \mathbb{Z}_{p}$ and computes $s_{1} \stackrel{\tau}{=} \beta_{1}+S, S_{2}=\beta_{2}+S \$$ and creates the secret key as: $t_{z}^{\prime}=\sum_{\tau}^{n_{3}} \underline{\underline{q}}_{q} \lambda_{z_{\tau}^{\prime}}$.
$L_{1}=g^{t_{v}^{\prime}}, \quad L_{2}=g^{\frac{\alpha s}{t_{z}^{\prime}}}$,
$K_{1}=\left\{K_{1,0}, K_{1,1}, \ldots, K_{1, N_{1}}\right\}=\left\{V_{0}^{s_{1}} \prod_{i \in V^{\prime}} g^{s a_{i}}, V_{0}^{s_{1}} \prod_{i \in V^{\prime}} g^{s a_{i} i}, \ldots, V_{0}^{s_{1}} \prod_{i \in V^{\prime}} g^{s a_{i} i^{N_{1}}}\right\}$
$K_{1}^{\prime}=\left\{K_{1,0}^{\prime}, K_{1,1}^{\prime}, \ldots, K_{1, N_{1}}^{\prime}\right\}=\left\{V_{0}^{\alpha s_{2}} \prod_{i \in V^{\prime}} g^{s \alpha a_{i}}, V_{0}^{\alpha s_{2}} \prod_{i \in V_{\prime}} g^{s \alpha a_{i} i}, \ldots, V_{0}^{\alpha s_{2}} \prod_{i \in V^{\prime}} g^{s \alpha a_{i} i^{N_{1}}}\right\}$
$K_{2}=\left\{K_{2,0}, K_{2,1}, \ldots, K_{2, N_{1}}\right\}=\left\{V_{0}^{s_{1}} \prod_{i \in Z^{\prime}} g^{s a_{i}}, V_{0}^{s_{1}} \prod_{i \in Z^{\prime}} g^{s a_{i} i}, \ldots, V_{0}^{s_{1}} \prod_{i \in Z^{\prime}} g^{s a_{i} i^{N_{1}}}\right\}$
$K_{2}^{\prime}=\left\{K_{2,0}^{\prime}, K_{2,1}^{\prime}, \ldots, K_{2, N_{1}}^{\prime}\right\}=\left\{V_{0}^{\alpha s_{2}} \prod_{i \in Z^{\prime}} g^{s \alpha a_{i}}, V_{0}^{\alpha s_{2}} \prod_{i \in Z^{\prime}} g^{s \alpha a_{i} i}, \ldots, V_{0}^{\alpha s_{2}} \prod_{i \in Z^{\prime}} g^{s \alpha a_{i} i^{N_{1}}}\right\}$
SK $=\left(S, L_{1}, L_{2}, K_{1}, K_{1}^{\prime}, K_{2}, K_{2}^{\prime}\right)$

Decryption (SK,CT)

The algorithm first identifies the wildcard positions in $J=\left\{w_{1}, \ldots, w_{n_{1}}\right\}$ and computes $\left\{\lambda_{w_{j}}\right\}$. Then it returns:

$$
\begin{aligned}
M= & \frac{e\left(L_{1}, C_{3}\right)^{t_{v}^{\prime}} \cdot e\left(L_{2}, C_{4}\right)^{t_{z}^{\prime}}}{e\left(\prod_{1}^{n_{1}} K_{1, j}^{\lambda_{j}}, C_{1}\right) \cdot e\left(\prod_{1}^{n_{1}}\left(K_{1, j}^{\prime}\right)^{\lambda_{w_{j}}}, C_{2}\right) \cdot e\left(\prod_{1} K_{2, j}^{n_{j}}, C_{1}\right) \cdot e\left(\prod_{j=0}^{n_{1}}\left(K_{2, j}^{\prime}\right)^{\lambda_{w_{j}}}, C_{2}\right)} \cdot C_{0} . \\
& \frac{e\left(L_{1}, C_{3}\right)^{t_{v} \cdot e\left(L_{2}, C_{C}\right)^{\prime} t_{z}^{\prime}}}{e\left(\prod_{j=0}^{n_{1}} K_{1, j}^{\left.\lambda_{j}, C_{1}\right) \cdot e \cdot \prod_{j=0}^{n_{1}}\left(K_{1, j}^{\prime}\right)^{\left.\lambda_{j}, w_{j}, C_{2}\right) \cdot e\left(\prod_{j=0}^{n_{1}} K_{2, j}^{\lambda_{j}}, C_{1}\right) \cdot e\left(\prod_{j=0}^{n_{1}}\left(K_{2, j}^{\prime}\right)^{\lambda_{w}}, C_{2}\right)}} M \Omega_{1}^{r_{1}} \Omega_{2}^{r_{2}}\right.}= \\
= & e\left(g, V_{0}\right)^{-\alpha \beta_{1} r_{1}} e\left(g, V_{0}\right)^{-\alpha \beta_{2} r_{2}} e\left(g, V_{1}\right)^{-\alpha \beta_{1} r_{1}} e\left(g, V_{1}\right)^{-\alpha \beta_{2} r_{2}} M \Omega_{1}^{r_{1}} \Omega_{2}^{r_{2}} \\
= & \Omega_{1}^{-r_{1} \Omega_{2}^{-r_{2}} M \Omega_{1}^{r_{1}} \Omega_{2}^{r_{2}}} .
\end{aligned}
$$

Security Proof CPA Game for CP-ABE

- Attacker \mathcal{A} can fix the access structure W before joining system
- \mathcal{A} can not get the secret key with the list of attributes not satisfy W
- Init : The attacker \mathcal{A} send the access structure W the challenger.
- Setup: The challenger runs the algorithm \mathcal{B}, and sent $P K$ to \mathcal{A}.
- Phase 1: \mathcal{A} makes repeated private keys $S K_{i}$ correponding to set of attributes $S \subseteq$ U, with $S \not \vDash W$ condition.
- Challenge :
- \mathcal{A} submits two equal length messages M_{0} and M_{1} to challenger.
- The challenger chooses a random $\mu \in\{0,1\}$, and encrypts $C T^{*}=\left(P K, M_{\mu}, W\right)$ and sent back to \mathcal{A}.
- Phase 2: Phase 1 repeated
- Guess : \mathcal{A} outputs a guess $\mu^{\prime} \in\{0,1\}$

$$
\operatorname{Adv}(\mathcal{A})=\left|\operatorname{Pr}\left(\mu^{\prime}=\mu\right)-\frac{1}{2}\right|
$$

CPA Security Game for CP-ABE

Init

Simulator

the access structure $W^{*}=\left[W_{1}^{*}, \ldots, W_{L}^{*}\right]$
$n_{1} \leq N_{1}$ wildcards which occur at positions $J=\left\{w_{1}, \ldots, w_{n_{1}}\right\} ;$
$n_{2} \leq N_{2}$ positive attributes which occur at positions $V=\left\{v_{1}, \ldots, v_{n_{2}}\right\}$;
$n_{3} \leq N_{3}$ negative attributes which occur at positions $Z=\left\{z_{1}, \ldots, z_{n_{3}}\right\}$.

Attacker

CPA Security Game for CP-ABE

Setup

Public Params

$$
\text { blic Params } \mathrm{PK}=\left(e, g, \Omega_{1}, \Omega_{2}, g^{\alpha}, V_{0}, V_{1}, A_{1}, \ldots, A_{L}\right)
$$

Selects $\sigma_{1}^{\text {simulator }}, \sigma_{2}, \sigma_{3} \in_{R} \mathbb{Z}_{p}, \gamma_{0}, \gamma_{1},\left\{a_{i}^{\prime}\right\}_{\{1 \leq i \leq L\}} \in \mathbb{Z}_{p}$, using Viete formulas $\left\{\lambda_{w_{j}}\right\}_{\left\{w_{j} \in J\right\}}^{\text {Attcker }}$. and sets $t_{w}=\sum_{i=n}^{n_{1}} \lambda_{w_{i}}$. Then calculates:

$$
\begin{aligned}
& V_{0}=\left(g^{b}\right)^{\gamma_{0}} g^{-\sum^{a t t_{i} \in W_{i}^{*}, i \in V}} \begin{array}{l}
\frac{a_{i}^{\prime} \prod_{j=1}^{n_{1}}\left(i-w_{j}\right)}{t_{w}}
\end{array}, V_{1}=\left(g^{b}\right)^{\gamma_{1}} g^{-\sum_{a t t_{i} \in W_{i}^{*}, i \in Z} \frac{a_{a_{i}^{\prime}}^{\prod_{j=1}^{\prime}\left(i-w_{j}\right)}}{t_{w}}}
\end{aligned}
$$

$$
M S K=\left(\alpha=a, \beta_{1}=\sigma_{1}-\sigma_{2}, \beta_{2}=\frac{\sigma_{3}}{a}-\sigma_{2}, a_{1}, \ldots, a_{L}\right)
$$

CPA Security Game for CP-ABE

Phase 1

Simulator

Suppose that a user joins the system with the attribute list L, which contains:

- $n_{2}^{\prime} \leq N_{2}$ positive attributes which occur at positions $V^{\prime}=\left\{v_{1}^{\prime}, \ldots, v_{n_{2}^{\prime}}^{\prime}\right\}$.
- $n_{3}^{\prime} \leq N_{3}$ negative attributes which occur at positions $Z^{\prime}=\left\{z_{1}^{\prime}, \ldots, z_{n_{3}^{\prime}}^{\prime}\right\}$.

By means of the Viète's formulas,

- for all the positive positions $\left\{v_{k}^{\prime}\right\}\left(k=0,1,2, \cdots, n_{2}^{\prime}\right)$, calculate $\left\{\lambda_{v_{k}^{\prime}}\right\}$ and set $t_{v}^{\prime}=\sum_{k=0}^{n_{2}} \lambda_{v_{k}^{\prime}} ;$
- for all the negative positions $\left\{z_{\tau}^{\prime}\right\}\left(\tau=0,1,2, \cdots, n_{3}^{\prime}\right)$, calculate $\left\{\lambda_{z_{\tau}^{\prime}}\right\} \$$ and set $t_{z}^{\prime}=\sum_{\tau=0}^{n_{3}^{\prime}} \lambda_{z_{\tau}^{\prime}}$.

CPA Security Game for CP-ABE

$$
\begin{aligned}
& L_{1}=\left(g^{a}\right)^{\frac{\sigma_{2}}{t_{v}}}, L_{2}=\left(g^{a}\right)^{\frac{\sigma_{2}}{t_{z}}} \\
& K_{1}=\left\{K_{1,0}, K_{1,1}, \ldots, K_{1, N_{1}}\right\}
\end{aligned}
$$

$$
\left.\frac{\sigma_{2} a_{i}^{\prime} N_{1}}{\sum_{\operatorname{att}_{m} \in W^{*}} a_{m}^{\prime} \prod_{j=1}^{n_{1}}\left(m-w_{j}\right)}\right\}
$$

CPA Security Game for CP-ABE

Simulator

$$
\begin{aligned}
& K_{1}^{\prime}=\left\{K_{1,0}^{\prime}, K_{1,1}^{\prime}, \ldots, K_{1, N_{1}}^{\prime}\right\} \\
& \left\{\left(g^{b}\right)^{\sigma_{3} \gamma_{0}} g^{-\sigma_{3} \frac{a t t_{i} \in W_{i}^{*}, i \in V^{a_{i}^{\prime}} \prod_{j=1}^{n_{1}}\left(i-w_{j}\right)}{t_{w}} \prod_{a t t_{i} \in W^{*}, i \in V}\left(g^{a}\right)^{\sigma_{2} a_{i}^{\prime}} . \prod_{a t t_{i} \notin W^{*}, i \in V}\left(g^{a}\right)^{a t t_{m} \in W^{*}} \sum_{m}^{a_{m}^{\prime} \prod_{j=1}^{n_{1}}\left(m-w_{j}\right)}},\right. \\
& \left(g^{b}\right)^{\sigma_{3} \gamma_{0}} g^{-\sigma_{3} \frac{a t t_{i} \in W_{i}^{*}, i \in V^{a_{i}^{\prime}} \prod_{j=1}^{n_{1}}\left(i-w_{j}\right)}{t_{w}}} a_{a t t_{i} \in W^{*}, i \in V}\left(g^{a}\right)^{\sigma_{2} a_{i}^{\prime} i} . \prod_{a t t_{i \notin} \notin W^{*}, i \in V}\left(g^{a}\right)^{a t t_{m} \in W^{*}} \sum_{m}^{a_{m}^{\prime} \prod_{j=1}^{n}\left(m-w_{j}^{\prime}\right)}, \\
& \left.\left(g^{b}\right)^{\sigma_{3} \gamma_{0}} g^{-\sigma_{3} \frac{a_{i t} \in W_{i}^{*}, i \in V}{a_{i}^{\prime}} \prod_{j=1}^{n_{1}}\left(i-w_{j}\right)} \prod_{a t t_{i} \in W^{*}, i \in V}\left(g^{a}\right)^{\sigma_{2} a_{i}^{\prime} i^{N_{1}}} . \prod_{a t t_{i \notin} \not W^{*}, i \in V}\left(g^{a}\right)^{a t t_{m} \in W^{*}{ }^{a_{m}^{\prime}} \prod_{j=1}^{n_{1}}\left(m-w_{j}\right)}\right\}^{\sum_{2} a_{i}^{\prime} N_{1}}
\end{aligned}
$$

CPA Security Game for CP-ABE

$$
K_{2}=\left\{K_{2,0}, K_{2,1}, \ldots, K_{2, N_{1}}\right\}
$$

$$
\left\{V_{1}^{\sigma_{1}} \prod_{a t t_{i} \in W^{*}, i \in Z} g^{\sigma_{2} a_{i}^{\prime}} \prod_{a t t_{i} \notin W^{*}, i \in Z} g^{g^{a t t_{m} \in W^{*}} a_{m=1}^{a_{2}^{\prime}} \prod_{j=1}^{\sigma_{1} a_{i}^{\prime}}\left(m=w_{j}\right)}, V_{1}^{\sigma_{1}} \prod_{a t t_{i} \in W^{*}, i \in Z} g^{\sigma_{2} a_{i}^{\prime} i} \prod_{a t t_{i} \notin W^{*}, i \in Z} g^{g^{a t t_{m} \in W^{*}} a_{m} \prod_{j=1}^{a_{2}^{\prime} a_{i}^{\prime}}\left(m=w_{j}\right)}\right.
$$

$$
\left., \ldots, V_{1}^{\sigma_{1}} \prod_{a t t_{i} \in W^{*}, i \in Z} g^{g_{2} a_{i}^{\prime} i^{N_{1}}} \prod_{a t t_{i} \notin W^{*}, i \in Z} g^{g^{a t t_{m} \in W^{*}} a_{m}^{\prime} \prod_{j=1}^{n_{1}\left(m-w_{j}\right)}}\right\}
$$

CPA Security Game for CP-ABE

Phase 1 路

simulator

$L_{1} \neq W$

$K_{2}^{\prime}=\left\{K_{2,0}^{\prime}, K_{2,1}^{\prime}, \ldots, K_{2, N_{1}}^{\prime}\right\}$

$\left.\left(g^{b}\right)^{\sigma_{3} \gamma_{1}} g^{-\sigma_{3} \frac{a^{a t t_{i} \in W_{i}^{*}, i \in Z}}{{ }^{a_{w}^{\prime}} \prod_{j=1}^{n_{1}}\left(i-w_{j}\right)}} \prod_{a t t_{i} \in W^{*}, i \in Z}\left(g^{a}\right)^{\sigma_{2} a_{i}^{\prime} i} \cdot \prod_{a t t_{i} \notin W^{*}, i \in Z}\left(g^{a}\right)^{a t t_{m} \in W^{*}}{ }^{a_{m}^{\prime}} \prod_{j=1}^{\sigma_{2}\left(m-w_{j}^{\prime} i\right.}\right)$,

Implicitly sets $\mathrm{s}=\sigma_{2}$

CPA Security Game for CP-ABE

Phase 1

Simulator

CPA Security Game for CP-ABE

Attacker

$$
\begin{aligned}
& C_{1}=\left(g^{a c}\right)^{\frac{1}{t_{w}}}, C_{2}=\left(g^{d}\right)^{\frac{1}{t_{w}}}
\end{aligned}
$$

CPA Security Game for CP-ABE

Challenge

Implicitly sets: $r_{1}=c, r_{2}=d$

CPA Security Game for CP-ABE

Guess

Guess b of b^{\prime}

If $T \stackrel{\text { simulator }}{=} g^{b(c+d)}$, the simulator B gives a perfect simulation so we have:
$\operatorname{Pr}\left[\mathcal{B}\left(g, g^{a}, g^{b}, g^{a c}, g^{d}, T=g^{b(c+d)}\right)=1 \mid T=g^{b(c+d)}\right]=\frac{1}{2}+A d v_{A}(k)$
If T is a random group element the message M_{b} is completely hidden from the adversary and we have:

$$
\operatorname{Pr}\left[\mathcal{B}\left(g, g^{a}, g^{b}, g^{a c}, g^{d}, T\right)=1 \mid T=g^{r}\right]=\frac{1}{2}
$$

B can solve DLIN with non-negligible advantage if $A d v_{A}(k)$ is non-negligible

Comparison

Comparison among CP-ABE

Scheme	Ciphertext Length	Dee Cost	Wildcard	Assumption
CN(3)	$\left\|\mathrm{G}_{\mathrm{T}}\right\|+(t+1)\|\mathrm{G}\|$	$(t+1) \mathrm{p}$	\checkmark	DBDH
NYO[8]	$\left\|\mathrm{G}_{T}\right\|+(2 t+1)\|G\|$	(2t+1) p	$\sqrt{ }$	DBDH + DLIN
Emura et al. [4]	$\mathrm{G}_{T}+2$ [${ }^{\text {c }}$	2 p	X	DBDH
ZH 112	$\mathrm{C}_{\mathrm{T}}+2 \mid \mathrm{G}$	$2 \mathrm{p}+1$	\checkmark	n-EDHE
CZF[2]	$\mathrm{G}_{\mathrm{T}}+2 \mid \mathrm{G}$	2p	X	n-BDHE
DZCCZ12[3]	$\mathrm{G}_{T}+2\|\mathrm{G}\|$	2p	X	n-BDHE
Our Scheme	$\mathrm{G}_{T}+4 \mathrm{C}^{\text {a }}$	6 p	$\sqrt{ }$	DLIN

Conclusion

- In first proposal:
- A constant-size ciphertext policy attribute based encryption scheme for the AND-Gates with wildcards access structure.
- Proved the selective security of our scheme under the Decision Linear assumption.

Thank you Q\&A

References

[2] C. Chen, Z. Zhang, and D. Feng. Efficient ciphertext policy attribute-based encryption with constant-size ciphertext and constant computation-cost. In $5^{\text {th }}$ ProvSec, pages 84-101, 2011.
[3] L. Cheung and C. Newport. Provably secure ciphertext policy abe. In 14th ACM CCS 2007, pages 456465.
[4] K. Emura, A. Miyaji, A. Nomura, K. Omote, and M. Soshi. A ciphertext-policy attribute-based encryption scheme with constant ciphertext length. In 5th ISPEC, pages 13-23, 2009.
[5] A. Ge, R. Zhang, C. Chen, C. Ma, and Z. Zhang. In Information Security and Privacy, pages 336-349, 2012.
[8] T. Nishide, K. Yoneyama, and K. Ohta. Attribute-based encryption with partially hidden encryptorspecified access structures. In 6th ACNS 2008, pages 111-129.
[12] Z. Zhou and D. Huang. On efficient ciphertext-policy attribute based encryption and broadcast encryption extended abstract. In 17th ACM CCS 2010, pages 753-755.

