
Compiler for group key exchange

Speaker: Yangguang Tian

December 13, 2014

Reference

1. Mark Manulis, Provably Secure Group Key Exchange, 2007
2. Jonathan Katz, Moti Yung, Scalable Protocols for Authenticated

Group Key Exchange, 2007
3. Mike Burmester, Yvo Desmedt, A secure and Efficient

Conference Key Distribution System, 1994

Outline

I Basic definition of authenticated key exchange (AKE), mutual
authentication (MA) and contributiveness (Con).

I Efficient Burmester-Desmedt protocol and compiler for
AKE-security.

I Concrete proof of compiler for AKE-security.
I Conclusion

Compiler

Definition (Mark Manulis): A security-enhancing Group Key Exchange
(GKE) protocol compiler C is a protocol which takes as input a GKE
protocol P and outputs a compiled GKE protocol P ′ with security
properties not provided by P.

P → C → P ′

Generic security-enhancing solutions!

Compilers

I Any secured key exchange protocols can be transferred to
authenticated key exchange (AKE) via
compiler for AKE-security;

I Any secured authenticated key exchange protocols can be
transferred to authenticated key exchange with mutual
authentication (MA) via compiler for MA-security;

I Any secured authenticated key exchange protocols with MA can
be transferred to AKE+MA protocol with contributiveness
(Con) via compiler for n-contributiveness;

I Multi-purpose compiler (any combination of them), which is
depending to protocol requirement.

KY-Model

I
∏si

i indicates instance si of user i .
I Execute, Send (active adversary), (Session key) Reveal, Corrupt,

Test query (fresh session).
I PID, SID, Partnering, Freshness* (1, no reveal query; 2, no send

query after corrupt query).
I Comparison with CK model. 2 party↔group party.

Authenticated Key Exchange

I Aim: From passive to active in view of adversary.
I Definition: Outsider (active) adversary A wins if she could

distinguish real session key and random value.

Mutual Authentication

I Aim: subsume unknown key share resistant, key confirmation.
I Definition:

∏si
i accepted session key ksi

i , and is known to
malicious participant (insider). A wins game if:

I These is no instance oracle
∏sj

j , that shared identical PID, SID,
or

I There is an instance oracle
∏sj

j accepted ksj
j 6= ksi

i , that shared
identical PID, SID.

I Two conditions are corresponding to?

Contributiveness

I Aim: subsume key control, unpredictability.
I Definition: A wins game if all holds:

I
∏si

i in terminate, accept pre-defined session key ksi
i , no corrupt

query;
I corrupt at most n − 1 users who are belonging to PID.

I Informally, A wins if there exist at least one honest user who
accept the session key that chosen previously by adversary.

Key Exchange Protocol: Efficient BD protocol

I Star-based, Tree-based, Broadcast-based, Ring-based.
I Round 1: Each user broadcasts Ri = g ri to others;

I Round 2: Each user computes Xi = (Ri+1
Ri−1

)ri = g ri+1∗ri

g ri−1∗ri
;

I Key computation:

Ki = Rn∗ri
i−1 ∗ X n−1

i ∗ X n−2
i+1 ... ∗ Xi−2

= g r1∗r2+r2∗r3...rn−1∗rn

I Analysis: Lacking of authentication!

Compiler for AKE-security

I Round 1: Each user broadcasts (0, ri , IDi) to others;
PID = (ID1||...IDn), SID = (r1||...||rn)

I Round 2: Each user broadcasts (1,Ri , σi) to others, where
σi = Sigxi (1,Ri ,PID,SID);

I Round 3: After verification, each user broadcasts (2,Xi , σ
′
i) to

others, where σ′i = Sigxi (2,Xi ,PID,SID);
I Key computation: After verification, each user computes Ki as

before.
I Analysis: Purpose of sequence number, nonce? Authentication

via? How to formally proof it? From KE to AKE!

Preliminary

I Game-hopping technique, why use it? What is the end point of
game?

I Simulation changed slightly! not jump too far.
I Transition based on failure events, condition events, bridge,

indistinguishability.
Difference Lemma:

|P[A]− P[B]| ≤ P[E]
⇔ P[A ∧ E] = P[B ∧ E]

I Concrete Example: From secured KE protocol (BD) to AKE. BD
as building block.

Game 0

I G0 : This is real game between adversary A and simulator S, S
has to answer all queries made by A under specific (e.g., CK)
model. We denote WinAKE

i as the probability of b′ = b at
respective games.

Game 1

I G1 : This game is identical to game G0 except that S will fail and
set b′ as random if a nonce ri is used by an uncorrupted instance
oracle in two different sessions. We define this event as Repeat:

∣∣Pr [WinAKE
0]− Pr [WinAKE

1]
∣∣ ≤ Pr [Repeat] ≤ n ∗m2/2k (1)

I Purpose: Prevent replay attack, guarantee session identifier is
unique.

Game 2

I G2 : This game is identical to game G1 except that S will fail and
set b′ as random if A’s send query in form of (σi ,mi), where σi
is valid signature that not previously generated by simulator
before issuing corrupt query to an uncorrupted party. We define
this event as Forge.∣∣Pr [WinAKE

1]− Pr [WinAKE
2]

∣∣ ≤ n ∗ Pr [Forge] (2)
I Purpose: No forgery attack, since secured digital signature used

for authentication, as a building block.

Sub-summary

I From active to passive in term of adversary’s attacking capability.
It actually removed active adversary’s replay and forgery ability,
which in turn equals to passive adversary.

I It paves the way for following games.

Game 3

I G3 : S will set g-th session as target session. S will fail and set
b′ as random if A issue test query not occur in the g-th session.

I We denote this event as Guess. Pr [Guess] = 1/m

Pr [WinAKE
3] = Pr [WinAKE

3 ∧ Guess] + Pr [WinAKE
3 ∧ Guess]

= Pr [WinAKE
2] ∗ 1/m + 1/2 ∗ (1− 1/m)

Game 4

I G4 : In this game, we consider simulator S no longer acts as just
an simulator, but an (passive) attacker against KE protocol,
denote it as AKE . However, AKE in this game might not
completely simulate all queries made by active A against AKE
since his attacking capability only confined to KE protocol. AKE
does additional computations based on specification of AKE .

I AKE has access to activate, (send), corrupt, session-key reveal,
test oracles under specified model (weaker than CK model, but
attacking capability is identical to active A).

I AKE will get real session key K from test oracle.

Game 4

A queries
answersAKE (Simulator)⇔ Oi (Different oracles)

Particularlly, based on queries from A, SKE answers either directly
from oracles Oi , or constructs it under specification of AKE .
When A issues test query (it is corresponding to g-th session), then
AKE will

Response ←
{

SK ← K b = 1
R ∈R {0, 1}k b = 0

Pr [WinAKE
3] = Pr [WinAKE

4] (3)

Game 5

I G5 : In this game, A will get random value R (instead of K)
from test oracle.

A test query
SK/R AKE

Response ←
{

SK ← R b = 1
R ∈R {0, 1}k b = 0∣∣Pr [WinAKE

4]− Pr [WinAKE
5]

∣∣ ≤ AdvKE
A (4)

I Obviously, A will get nothing information about b except
random guess.

Pr [WinAKE
5] = 1/2. (5)

Remarks

I After compiler for AKE-security, we can continue to use compiler
for MA-security (Katz-Shin), or compiler for contributiveness.

I Each game’s transition?
I Game 3-5 can reduced to one game! Transition based on

indistinguishability.

SK ←
{

K G2
R G3

I No matter how many building blocks are being used, we always
can reduce the proposed protocol to those building blocks. That
is why using game-hopping technique.

Conclusion

I Compiler is depending on security requirement.
I Proposed protocol can be reduced to building blocks.
I All mentioned compilers are generic, when applied to concrete

GKE protocols, we need to consider further efficiency
optimization.

Thanks for your time!
Question?

