
Key Exchange Protocol: HMQV and Its
Security Proof

Speaker: Yangguang Tian

September 12, 2014

Hugo Krawczyk
HMQV: A High-Performance Secure Diffie-Hellman Protocol
July 5, 2005 Crypto

Outline

I DH → MTI → MQV → HMQV.
I Relevant signatures: Exponential Challenge-Response (XCR)

Signature, Dual CR signature, Hash CR signature and its
relevant security proof.

I CK (Canetti-Krawczyk) model.
I Basic security of HMQV.
I Further security of HMQV, like KCI, weak PFS, or Key

confirmation.
I Conclusion

Evolution of HMQV

I MTI: Adding authentication to DH. It can not maintain PFS and
KCI attack together. For example: MTI (C).

I A → B: K ra
b

I B → A: K rb
a

I Session key computed by A:
SK = (K rb

a)ra/xa = (g xa∗rb)ra/xa = g ra∗rb

I It maintained Forward Secrecy! But it suffers to KCI attack: xa
is known to A, and A impersonate B to A successfully.

I A modify K rb
a to K xa∗re

b where re is chosen by A.
I A computes SK = (K xa∗re

b)ra/xa = (gxb∗xa∗re)ra/xa = gxb∗re∗ra .
I A computes SK = (K ra

b)re , same as party A.

Evolution of HMQV

I MQV protocol:
I Â and B̂ exchange Xa = g ra and Yb = g rb ;
I Â computes
σa = (Yb + e ∗ Kb)(ra+d∗xa) = g (rb+e∗xb) ∗ (ra + d ∗ xa), B̂
computes σb = (Xa + d ∗ Ka)(rb+e∗xb); Both parties generate
Kab = H(σa) = H(σb)

I d = 2l + (Xamod2l), e = 2l + (Ybmod2l), where l = |q|/2.
Trade-off between performance and security.

I It achieved both Forward secrecy and KCI, but suffer to UKS
attack.

Evolution of HMQV

I A modify Xa = g ra to Ye = Xa ∗ K d
a ∗ g−u, where d same as

before, u is chosen by A. But Ke = gu/de where
de = 2l + (Yemod2l), it has been registered to CA (A has to
register public key to CA each time).

I B computes SKAB = (Ye ∗ K de
e)rb+xb∗e =

(Xa ∗ K d
a ∗ g−u ∗ (gu/de)de)rb+xb∗e = (Xa ∗ K d

a)rb+xb∗e . This value
same as session key generated by A in MQV. That means B
thinks he is communicate with A, but in fact, he is talking to A.
In other words, session keys are disclosed to third party (e.g., A)
other than A and B.

HMQV

I How to prevent UKS attack? Solution: Binding identity (signed
message) and exchanged DH values. For example: Â computes
e = H(Xa||B̂) and d = H(Yb||Â).

I It also achieves KCI, weak PFS, disclose of gxa∗xb or g ra∗rb , etc.

Description of HMQV

I Â and B̂ exchange Xa = g ra and Yb = g rb ;
I Â computes σa = (Yb + e ∗ Kb)(ra+d∗xa) = g (rb+e∗xb)∗(ra+d∗xa), B̂

computes σb = (Xa + d ∗ Ka)(rb+e∗xb); Both parties generate
Kab = H(σa) = H(σb)

I d = H(Xa, B̂), e = H(Yb, Â)
I Additional security-Key confirmation (Actually, it is not

necessary!).
I MACKab (0). You can add this to either second message or both

second and third message.

XCR signature

I Schnorr identification signature → Exponential Challenge
Response signature (XCR) and Dual XCR. (Modified Schnorr
Identification Signature)

I Comparison between them:
1 B sends Yb = g rb to A;
2 A sends challenge e to B; (A sends challenge Xa to B)
3 B computes s = rb + xb ∗ e; (B computes X s

a = X rb+xb∗e
a , where

e = H(Xa||m) and return X s
a to A. It changed to signature

protocol by using Fait-Shamir transformation)
4 A accepts if g s = Yb ∗ K e

b . (A check X s
a = (Yb ∗ K e

b)xa)
I This is exponential challenge response signature protocol within

bracket.

Reduction for XCR

I Game between forger F (target singer B̂) and S.
I Setup: S input (X0,B) output gb∗x0 ; S sets B as pubic key of

signer B̂.
I Simulate signing oracle (based on (X ,m) chosen by A):

I Choose s ∈R Zq, e ∈R {0, 1}l ;
I Sets Y = g s/Be ;
I Sets H(Y ||m) = e. (Random oracle controlled by S)
I Verification: S returns (Y ,X s). A checks whether X s = Y ∗ Be?

I Repeat experiment: F outputs (Y0,m0, σ), satisfied following
conditions: 1, (Y0,m0) not used as signature generation; 2,
(Y0,m0) was queried in random oracle. If all satisfied, then go to
repeat experiment. In the end, F will output another
(Y0,m0, σ

′). Key point here: H(Y0,m0) will get e and e′ in two
experiment. This is Forking technique.

I Solution to CDH(X0,B) = (σ/σ′)(e−e′)−1 = gxb∗r0 .

DCR

I The challenge chosen by A changed from X to X ∗ K d
a . Here is

how to simulate signer B̂:
I Choose s ∈R Zq, e ∈R {0, 1}l ;
I Sets Y = g s/Be ;
I Sets H(Y ||m) = e.
I Verification: S returns (Y , (X ∗ K d

a)s). A checks whether
(X ∗ K d

a)s = (Y ∗ Be)ra+d∗xa ?
I As for forking lemma technique, signed message m′ chosen by S,

it might generates two different d = H(m′||X) and d ′ between
two experiments. The solution changed to:
CDH(X0,B) = ((σ/(Y ∗ K e

b)d∗xa)/(σ′/(Y ∗ K e′
b)d′∗xa))1/e−e′ .

Here we can see xa is known to S.
I It is a special case of XCR.

Hashed CR signature

I Compare to previous signatures:
I B̂ as signer, S provides outgoing DH value (state) yi to A. In

order to maintain the Consistency, we need DDH oracle.
Specifically, check CDH(Xi ,B) = (σi/X yi

i)1/ei , where
ei = H(Yi ||mi), Xi is challenge by A.

I S changes simulation (simulate signer B̂) slightly, he needs to
simulate random value r (in place of H(σ)).

I Even if ephemeral DH exponents are leaked, still secure! It can be
reduced to KEA1 and GDH problem (two stronger assumptions).

Reduction for HCR

I Simulate signer B̂:
I A sends mi to S for signing, then S will choose yi ∈R Zq, sets

ei = H(Yi ||mi), return yi , ei to A.
I A sends (Yi = gyi ,mi) along with challenge Xi to S, then DDH

oracle checked by S. If yes, set ri as response of H(σ), otherwise,
ri is random value. Eventually, return ri to A.

I Upon S forgery guess (Y0,m0, r0)
I First two conditions same as before.
I r0 was queried in random oracle H(σ0).

I Repeat experiment: Same as before, H(Y0,m0) will get e and e′
in two experiment. This is Forking technique. Eventually, S finds
solution to CDH same as XCR.

Reduction for HCR

I Consider collision forgery. A chooses previous response ri as
guess forgery. That means X y0+e0∗b

0 = X yi +ei∗b
i . It can be

reduced to GDH problem and KEA1 problem under random
oracle model. It is the further security of HMQV.

I KEA1 assumption: One algorithm is given that input (g , ga),
output (C ,C a). There must be another algorithm that given
same input, it needs to choose b and computes (gb, (ga)b)
satisfy above output.

I Collision forgery (Y0,m0, r0) and collision signature (Yi ,mi , ri),
where r0 6= ri . We wanna proof the probability of this collision is
negligible.

CK model

I Game between A and S:
I Activate query (party): S will return exchanged DH exponents

(ephemeral public key) and peer identity.
I State-reveal query (incomplete session): S will return ephemeral

secret key, e.g., xa.
I Corrupt query (party): S will return long term secret key, e.g., xa.
I Session key query (complete session): S will return session key of

that session except g-session (used for test session).
I Test query (fresh session): S either return session key SK or

random value.
I Freshness (Clean): It relates to test session. Variant of CK,

define (ra, xa, rb, xb), any pair of them corrupted except one
party’s ephemeral and long term key together (ra, xa) can be
reduced to hard problems.

I Security: Pr(b′ = b) = 1/2 + AdvHMQV
A

Basic Security of HMQV

I CK model adversary related to forging attack. Due to
SK = H(σ), we have:

I If A could forge σ, then she could distinguish SK and
r ∈R {0, 1}k ; If A could not forge correct σ, then she will not
distinguish since random oracle used H(r).

I Indistinguishability (IND) ⇒ Unforgeability.
I CK model adversary related to key replication attack. Which

means, A forces one particular session generates SK that equal
to SK of test session. A issues session key query to that session
without forging attack. Trivial attack.

High-level Analyze

I Consider test session (Â, B̂,X0,Y0) and test signature
π(Â, B̂,X0,Y0). Y0 is controlled by A. Based on Y0, it implies
following cases:

C1 Y0 not output by B̂;
C2 Y0 generated by B̂ in a matching session (B̂, Â,Y0,X0);
C3 Y0 generated by B̂ at a session (B̂, Â∗,Y0,X∗);
C4 Y0 generated by B̂ at a session (B̂, Â,Y0,X∗), where X∗ 6= X0.

I C1,C2,C3 can be simulated by F , C4 be simulated by F ′

Simulation by F

I Goal of F : input are (X0,Kb) and signing oracle B̂, output is
g r0∗xb .

I Setup stage: In (n-party, m-session) group setting, F picks party
B̂ and sets public key Kb. Picks party Â and sets t-th session as
guess-session.

I Training stage: F answer all queries made by A, especially, F
answer signature and session key together for session key query
(stronger assumption).

I Activate query (party): F returns (Xi ,Yi , peer − ID);
I State reveal query (incomplete session): F returns ri ;
I Session key query (complete session): F returns SKi and σi ;
I Corrupt query (party): F returns xi .

Simulation by F

I Challenge stage: If A selects Â g-session as test session and peer
is B̂, then F assigns X0 to A as outgoing value.

I Conditions for aborting:
I A halts with test session that different to g-session.
I A corrupts Â or B̂.
I A issues state-reveal query or session key reveal query to

g-session.
I A issues state-reveal query or session key reveal query to

matching session of g-session.
I Guess stage: Assume F not abort, then if A outputs a guess

signature π, then F outputs (Y0, Â, π) as a forgery on message
m0 (on challenge X0) of DCR.

Analyze of F

I IND between real attack and simulation;
I F has full information of group parties except B̂, so that

simulation is perfect.
I As for B̂, F simulates above related queries by using signing

oracle B̂.
I As long as F does not abort, we can assume it is perfect

simulation.
I Simulation covered C1,C2,C3, check validity of triple.

C1 Obviously, (Y0, Â, π) is valid.
C2 Y0 only exist in test session, not session queried before. Still

valid.
C3 Y0 exist in a session (B̂, Â∗,Y0,X∗), and signer B̂ might answer

π(B̂, Â∗,Y0,X∗). But pair (Y0, Â) still clean. π is valid too.

Simulation of F ′

I Define session H(Â, B̂,Y0,X∗) as s∗ and π∗ as its signature.
Simulation almost same as previous one, the differences are:

I Setup stage: F ′ sets party B̂ l-th session that outgoing value is
Y0.

I Training stage: If A issues session key query to l-th session, F ′
returns random value to A. F ′ will never query π∗ .

I Rewind stage: If A halts without query s∗, F ′ same as F ; If A
queried s∗, then rewind to the querying point, pick the previous
query to random oracle (e.g., v queried by A) and compute H(v)
as answer to this session key query (s∗).

Analyze of F ′

I IND between real attack and simulation;
I A not query s∗; Obviously, same as before.
I A query s∗, but not π∗; Random value as response can be

accepted by A, still IND.
I A query both s∗ and π∗. The π∗ must be queried by A (forged

by A) and stored in random oracle, and the response of F ′ also
can be accepted by A.

I The π∗ was never queried by F ′. Even if s∗ queried, but return
either random value or previous output of H. So, forgery
(Y0, Â, π) is valid forgery to B̂.

Further security

I Key Compromise Impersonation attack. We assume A knows Â
private key xa when forging B̂ signature. Remove one specific
condition of abort (simulation by F).

I weak Perfect Forward secrecy. HMQV only achieve weak PFS, it
suffer to active attack. In order to achieve full PFS, add key
conformation so that guarantee DH values are chosen by peers.

I In HCR, it proved that: even if both ephemeral DH exponents
are disclosed, it is still secure since reducing to GDH problem. It
is proven in HCR reduction.

Conclusion

I Building block is proven secure, the proposed protocol (scheme)
reduce to it! Here first proof modified Schnorr signatures are
secure, then HMQV can be reduced to unforgeability under CK
model. The relationship between IND and unforgeability is key
point (random oracle). In other words, forging is one of means to
distinguish, the other way is key replication attack.

I Slightly different original CK model, this variant CK model allow
A to access much more info. For example, Hashed CR signature
is going to proof the HMQV still secure even if exchanged DH
values are leaked.

Thanks for you time!
Question?

