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Background of Identity-Based Encryption

Identity-Based Encryption system is a public key encryption system in
which a user’s public key may be an arbitrary string and the private
key is generated by a trusted authority, called a Private Key Generator
(PKG), which applies its master key to the user’s identity after the
user authenticates it self.

Motivation To simplify public key and certificate management.[1]

Features disparate public keys → public identities
public key certificates → eliminated



Definition of Identity-Based Encryption

An identity-based encryption scheme E is a tuple of four
polynomial-time algorithms (Setup,Extract,Encrypt,Decrypt)
satisfying the following:

The environment set-up algorithm Setup takes as input a
security parameter 1k and returns params (system parameters)
and a master-key.

The key generation algorithm Extract takes as input an
arbitrary ID ∈ {0, 1}∗ and master-key, and returns a private
key dID ← Extractmaster-key(ID).



Definition of Identity-Based Encryption

The encryption algorithm Enc takes as input an ID and a
message M ∈M, and returns a ciphertext C ← EncID(M) ∈ C.

The decryption algorithm Dec takes a private key dID and a
ciphertext C ∈ C, and returns M ← DecdID(C) ∈M.

It is required that

Pr[DecExtractmaster-key(ID)(EncID(M)) =M ]

except with possibly negligible probability over master-key output by
Setup(1k), any M in M, any ID ∈ {0, 1}∗, and any randomness used
by Enc and Extract.



Security Model of Identity-Based Encryption

IND-CCA IND-ID-CCA
Challenger Adversary Challenger Adversary

ST KenGen(k) → pk Setup(k) → params
→(pk,sk) →(params,mk)

← ci ← IDi, ci
P Decsk(ci) → mi DecExtract(ci) → mi

1 ← IDi

Extractmk(IDi) → dIDi
P ← m0,m1 ← m0,m1, ID

∗

C Encpk(mb) → c∗ Enc(mb, ID
∗) → c∗

P Same as Phase 1 Same as Phase 1
2 c 6= c∗ ID 6= ID∗, (c, ID) 6= (c∗, ID∗)
G b = b′? ← b′ b = b′? ← b′

AdvIdCCASIBE,A = |Pr[c = c′]− 1

2
|



Security Model of Identity-Based Encryption

Definition
An IBE system is (t, qID, qC , ε) IND-ID-CCA secure if all t-time
IND-ID-CCA adversaries making at most qID private key queries and
at most qC chosen ciphertext queries have advantage at most ε in
winning the above IND-ID-CCA game.

Definition
An IBE system is (t, qID, ε) IND-ID-CPA secure if it is (t, qID, 0, ε)
IND-ID-CCA secure.
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Gentry IBE’s Contribution

CCA secure without random oracles

A tight reduction via Cramer-Shoup proof style on a stronger
assumption

Recipient-anonymity



Preliminaries

Bilinear Maps

G and GT are two multiplicative cyclic groups of prime order p;

g is a generator of G
e : G×G→ GT is a bilinear map.

Properties

Bilinear: for all u, v ∈ G and a, b ∈ Z, we have
e(ua, vb) = e(u, v)ab.

Non-degenerate: e(g, g) 6= 1.

Definition
A group G is a bilinear group if the group action in G can be
computed efficiently and there exists a group GT and an efficiently
computable bilinear map e : G×G→ GT as above.



Reduction Proof

A top-level concept
In the simulation, we pack the hard problem in a
fashion that adversary would accept, ask the adversary
to do its job and study what the adversary has done.

For a decisional hard problem:

1 If the input of the decisional hard problem is True. The adversary
should be able to attack with its full advantage if the adversary
cannot notice it is a simulation rather than an actual attack.

2 If the input is False. The adversary should have no advantage to
do its job whatsoever.



Reduction Proof

Now we have three tasks in the proof:

1 To provide the environment and the cryptanalysis training course
so that the simulation is polynomially indistinguishable from an
actual attack.

2 To encrypt a valid challenge ciphertext with the hard problem
embedded so that if the input of hard problem is from random
space it would also make the ciphertext into the same
distribution so that in the adversary’s view the ciphertext is
independent of its message.

3 To answer the hard problem with the educated guess from the
adversary.



Complexity Assumptions

q-BDHE Given a vector of 2q + 1 elements(
g′, g, gα, g(α

2), . . . , g(α
q), g(α

q+2), . . . , g(α
2q)
)
∈ G2q+1

as input, output e(g, g′)(α
q+1).

Decisional q-ABDHE Given a vector of q + 4 elements(
g′, g′(α

q+2), g, gα, g(α
2), . . . , g(α

q), Z
)
∈ Gq+3 ×GT

as input, output 1 if Z = e(g, g′)(α
q+1), otherwise output 0.

∗ From now on, we use gi and g′i to denote g(α
i) and g′(α

i).



Construction 1

Let G and GT be groups of order p, and let e : G×G→ GT be the
bilinear map.

Setup generators g, h
R← G, α

R← Zp, g1 = gα ∈ G, outputs
params = (g, g1, h), master-key = α.

Extract(ID) rID
R← Zp, hID = (hg−rID)

1
α−ID (ID 6= α), outputs

dID = (rID, hID).

Encrypt(m, ID) s
R← Zp, outputs

C = (gs1g
−s·ID, e(g, g)s,m · e(g, h)−s).

Decrypt(C, ID) Let C = (u, v, w) with ID, outputs
m = w · e(u, hID)vrID .



Reduction Proof for Construction 1 I

Suppose adversary A (t′, ε′, qID)-breaks the IND-ID-CPA security of
the construction 1, we construct simulator B(g′, g′q+2, g, g1, . . . , gq, Z)
where q = qID + 1.

Setup polynomial f(x)
R← Zp[x] of degree q, h = gf(α),

outputs

params = (g, g1, h).

Phase 1 Key query For ID ∈ Zp, FID(x) =
f(x)−f(ID)

x−ID , outputs

dID = (rID, hID) = (f(ID), gFID(α)).

Validity: gFID(α) = g
f(α)−f(ID)

α−ID = (hg−f(ID))
1

α−ID .



Reduction Proof for Construction 1 II

Challenge A outputs M0,M1, ID
∗, B flips a fair coin c ∈ {0, 1},

computes dID∗ = (rID∗ , hID∗), let

F2,ID∗(x) =
xq+2−(ID∗)q+2

x−ID∗ , sets

u = g′α
q+2−(ID∗)q+2

v = Z · e(g′,
q∏
i=0

g
F2,ID∗,i
i )

w =Mc/e(u, hID∗)v
rID∗

and outputs the challenge ciphertext C = (u, v, w).

Phase 2 B responds to queries the same way as in Phase 1.

Guess A outputs c′. If c′ = c, B outputs 1; otherwise outputs
0.



Reduction Proof for Construction 1 III

Now we study the two cases:
Case 1: Z = e(gq+1, g

′) Goal: A cannot distinguish it is a simulation.

The validity of the challenger ciphertext:
Let s = (logg g

′)F2,ID∗(α).
Since Z = e(gq+1, g

′),

u = gs(α−ID
∗) = gs1g

−s·ID

v = e(gq+1, g
′)e(g′,

q∏
i=0

gF2,ID∗,i·αi)

= e(g′, gα
q+1+(

∑q
i=0 F2,ID∗,iα

i))

= e(glogg g
′
, gF2,ID∗ (α)) = e(g, g)s

Mc/w = e(gs(α−ID
∗), (gf(α)g−f(ID

∗))
1

α−ID∗ )e(g, g)sf(ID
∗)

= e(gs, hg−f(ID
∗))e(gs, gf(ID

∗))

= e(g, h)s



Reduction Proof for Construction 1 IV

WARNING! Private key simulation (Different from PKE)

Question: Could A distinguish the simulation from private key
distribution?
To prove the private keys issued by B are appropriately
distributed. Let ID = {ID1, . . . , IDqID , α, ID

∗}, we have
|ID| ≤ q + 1. Since f(x) is a uniformly random polynomial of
degree q, in A’s view private keys

dID = (rID, hID), rID = f(ID), hID = (hg−rID)
1

α−ID are uniformly
random and independent.



Reduction Proof for Construction 1 V

Case 2: Z is uniformly random
Goal: c is independent in A’s view whatsoever.
Z is uniformly random ⇒ (u, v) is uniformly random and independent

⇒v 6= e(u, g)
1

α−ID∗ holds with 1− 1/p.
On the other hand, rID∗ is uniformly random and independent in A’s
view
Therefore, Mc/w = e(u, hID∗)v

rID∗ = e(u, h)α−ID
∗
( v

e(u,g)
1

α−ID∗
)rID∗ is

uniformly random and independent in A’s view
To summarize, B would have ε′ advantage to solve the hard problem
except with negligible probability.

�



Construction 2

Let G and GT be groups of order p, and let e : G×G→ GT be the
bilinear map.

Setup generators g, h1, h2, h3
R← G, α

R← Zp,g1 = gα ∈ G,
a collision-resistant hash function H, outputs
params = (g, g1, h1, h2, h3, H), master-key = α.

Extract(ID) For i = 1, 2, 3, rID,i
R← Zp, hID,i = (hg−rID,i)

1
α−ID

(ID 6= α), outputs
dID = {(rID,i, hID,i) : i ∈ {1, 2, 3}}.

Encrypt(M, ID) s
R← Zp,u = gs1g

−s·ID, v = e(g, g)s,
w = m · e(g, h1)−s, β = H(u, v, w),
y = e(g, h2)

se(g, h3)
sβ , outputs C = (u, v, w, y).

Decrypt(C, ID) Let C = (u, v, w, y). β = H(u, v, w) and tests

y
?
= e(u, hID,2h

β
ID,3)v

rID,2+rID,3β .
Yes, m = w · e(u, hID,1)vrID,1
Otherwise the recipient outputs ⊥.



Reduction Proof for Construction 2 I

Suppose adversary A (t′, ε′, qID, qC)-breaks the IND-ID-CCA security
of the construction 2, we construct simulator
B(g′, g′q+2, g, g1, . . . , gq, Z) where q = qID + 2.

Setup Three random polynomials fi(x)
R← Zp[x] of degree q

for i = 1, 2, 3, computes hi = gfi(α) and outputs

params = (g, g1, h1, h2, h3).

Phase 1 [Private key queries]
For ID ∈ Zp, B uses fi(x) to generate
{(rID,i, hID,i) : i = 1, 2, 3} as before so that
(rID,i, hID,i) = (fi(ID), gFi,ID(α)).
[Decryption queries]
For (C, ID), B check the data-integrity, generates a
private key for ID as above and decrypts it.



Reduction Proof for Construction 2 II

Challenge After A outputs M0,M1, ID
∗, B flips a fair coin

c ∈ {0, 1}, computes
dID∗ = {(rID∗,i, hID∗,i) : i = 1, 2, 3}, (u, v, w) using
(rID∗,1, hID∗,1), β = H(u, v, w),

y = e(u, hID,2h
β
ID,3)v

rID,2+rID,3β , outputs
C = (u, v, w, y).

Phase 2 B responds to queries the same way as in Phase 1.

Guess A outputs c′. If c′ = c, B outputs 1; otherwise outputs
0.

Then we consider the two cases:
Case 1: Z = e(gq+1, g

′) Goal: A cannot distinguish it is a simulation.

Key generation simulation is good as before.

Decryption simulation Goal: Reject all invalid ciphertext

Question: Have we leaked any information so that A could use
to generate an invalid ciphertext that would pass the
data-integrity check?



Reduction Proof for Construction 2 III

What A wants to do: to make (u′, v′, w′, y′) for a not queried ID

where v′ 6= e(u′, g)
1

α−ID valid.

A needs to find

ay′ = au′(logg hID,2 + β′ logg hID,3) + av′(rID,2 + β′rID,3) (1)

where au′ = logg u
′, ay′ = loge(g,g) y

′, av′ loge(g,g) v
′.

From the construction of the private key:

logg h2 = (α− ID) logg hID,2 + rID,2 (2)

logg h3 = (α− ID) logg hID,3 + rID,3 (3)

Then Equation (1) changes to:

ay′ = (
au′

α− ID
)(logg h2 + β′ logg h3) + (av′ −

au′

α− ID
)(rID,2 + β′rID,3)

(4)



Reduction Proof for Construction 2 IV

WARNING! rID,i = fi(ID)
A’s learning from rID1,2, . . . , rIDq−2,2, h2, rID1,3, · · · , rIDq−2,3, h3.

[λ
(2)
0 , λ

(2)
1 , . . . , λ

(2)
q , λ

(3)
0 , λ

(3)
1 , . . . , λ

(3)
q ]

f



1 1 · · · 1 1 0 0 · · · 0 0
ID1 ID2 · · · IDq−2 α 0 0 · · · 0 0

...
...

...
...

...
...

...
...

...
...

IDq
1 IDq

2 · · · IDq
q−2 αq 0 0 · · · 0 0

0 0 · · · 0 0 1 1 · · · 1 1
0 0 · · · 0 0 ID1 ID2 · · · IDq−2 α
...

...
...

...
...

...
...

...
...

...
0 0 · · · 0 0 IDq

1 IDq
2 · · · IDq

q−2 αq


V

ay′ = (
au′

α− ID
)(logg h2 + β′ logg h3) + (av′ −

au′

α− ID
)(f · γ ID‖β′γ ID)

(5)

where γ ID = (1, ID, . . . , IDq).

SAFE! γ ID‖β′γ ID is linear independent of V .
A finds such a y′ with negligible probability.



Reduction Proof for Construction 2 V

Case 2: Z is uniformly random.
Goal: c is independent in A’s view whatsoever.
⇒ Unbounded computational power of A.
From the challenge ciphertextψ = (u, v, w, y) for ID∗:

loge(g,g)(Mc/w) =
au

α− ID∗
logg h1 + (av −

au
α− ID∗

)rID∗,1 (6)

c should be independent in A’s view as discussed in Construction 1.

WARNING! the independence of rID∗,1 is no longer guaranteed.

Question: Is it possible for A to generate related invalid
ciphertext which could pass the data-integrity so that it would be
numerically decrypted?



Reduction Proof for Construction 2 VI

If A queries an invalid ciphertext ψ′ = (u′, v′, w′, y′) for unqueried
identity ID, where (u′, v′, w′, y′, ID) 6= (u, v, w, y, ID∗) and
β′ = H(u′, v′, w′).
There are three cases to consider:

1 (u′, v′, w′) = (u, v, w): Hashes are equal as well.

ID = ID∗ y′ 6= y, reject.
ID 6= ID∗ A must find a y′ that satisfies Equation (5), but

γ ID‖βγ ID is independent of
[V1, . . . , V2q−2,γ ID∗‖βγ ID∗ ].

2 (u′, v′, w′) 6= (u, v, w) and β = β′: Hash function!?

3 (u′, v′, w′) 6= (u, v, w) and β 6= β′:

ID 6= ID∗ Negligible probability for essentially the same
reason as Item 1.

ID = ID∗ Then γ ID‖βγ ID and γ ID‖β′γ ID are linearly
independent to each other and the columns of V .



Reduction Proof for Construction 2 VII

SAFE! No information about rID∗,1 is leaked. c is independent in
A’s view.

Therefore, CCA Secure X. B would have ε′ advantage to solve the
hard problem except with negligible probability.

�
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Conclusion

Guarded decryption! Data-integrity check with message
information and extra random augments

Add redundancy against more powerful attacks

For CPA secure, one thing different in IBE system is it needs to
prove the key generation simulation.

For CCA secure, Cramer-Shoup security proof technique is very
useful, but it needs thoroughness and carefulness.
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Thankyou.
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