

Practice Makes Perfect: Attack Encryption Schemes *

Fuchun Guo, Willy Susilo, and Yumei Li

University of Wollongong, Australia {fuchun,wsusilo,yl182}@uow.edu.au Fuchun: See you at ChinaCrypt 2023 in GuangZhou.

Abstract

Practice makes perfect if and only if you practice and find the answers by yourself.

1 Introduction

The tricks for attacking encryption schemes are somehow different from that for attacking signature schemes. We classify 5 types but cannot say much here; Otherwise, Section 2 will be split into two pages and it looks ugly.

2 Summary Attacks

The practice can be classified into the following 5 types.

- **Type 1:** Given a challenge ciphertext in PKE, the adversary can break the IND (indistinguishability) with pk only.
- **Type 2:** Given a challenge ciphertext in PKE, the adversary can break the IND with the help of decryption queries. The adversary can make very special queries to break IND.
- **Type 3:** Given a challenge ciphertext in ABE or further, the adversary can break the IND with *mpk* only. There is no need to know any private key.
- **Type 4:** Given a challenge ciphertext in ABE or FE, the adversary can break the IND with *mpk* and some private keys. If the adversary needs many private keys, it means that these private keys can be combined together to break the IND.
- **Type 5:** Given a challenge ciphertext in ABE or further, the adversary can break the IND with *mpk*, some private keys, and decryption queries. (We are not going to introduce this case since the solution for CCA borrows the ideas from tricks for CCA-secure PKE.)

^{*}We decided to collect insecure schemes in 2022 but don't have time to finish this project until recently.

3 Public-Key Encryption

3.1 Scheme (ElGamal)

Let (\mathbb{G}, g, p) be the cyclic group and $H : \{0, 1\}^* \to \{0, 1\}^n$ be the cryptographic hash function that will be shared by all users.

KeyGen: The key generation algorithm chooses a random number $\alpha \in \mathbb{Z}_p$, computes $g_1 = g^{\alpha}$, and returns a public/secret key pair (pk, sk) as follows:

$$pk = g_1, sk = \alpha.$$

Encrypt: The encryption algorithm takes as input a message $m \in \{0, 1\}^n$ and the public key pk. It chooses a random number $r \in \mathbb{Z}_p$ and computes the ciphertext as

$$CT = (C_1, C_2) = (g^r, H(g_1^r) \oplus m)$$

Decrypt: The decryption algorithm takes as input CT and the secret key sk. It decrypts the ciphertext by computing

$$M = H(C_1^{sk}) \oplus C_2.$$

Question 1 Is this scheme secure in the IND-CPA security model?

Question 2 Is this scheme secure in the IND-CCA security model?

3.2 Scheme (ElGamal +)

Let (\mathbb{G}, g, p) be the cyclic group and $H : \{0, 1\}^* \to \{0, 1\}^n, H_1 : \{0, 1\}^* \to \mathbb{Z}_p$ be the cryptographic hash functions that will be shared by all users.

KeyGen: The key generation algorithm chooses a random number $\alpha \in \mathbb{Z}_p$, computes $g_1 = g^{\alpha}$, and returns a public/secret key pair (pk, sk) as follows:

$$pk = g_1, sk = \alpha.$$

Encrypt: The encryption algorithm takes as input a message $m \in \{0, 1\}^n$ and the public key pk. It chooses a random number $r \in \mathbb{Z}_p$ and computes the ciphertext as

$$CT = (C_1, C_2, C_3) = (g^r, (g_1g^T)^r, H(g_1^r) \oplus m)$$
, where $T = H_1(C_1, C_3)$.

Decrypt: The decryption algorithm takes as input CT and the secret key sk. It decrypts the ciphertext by computing

$$M = H(C_1^{sk}) \oplus C_3.$$

It checks the validity of the ciphertext by checking whether C_2 is equal to

 $C_1^{\alpha+H_1(C_1,C_3)}.$

Question 3 Is this scheme secure in the IND-CPA security model?

Question 4 Is this scheme secure in the IND-CCA security model?

3.3 Scheme (ElGamal ++)

Let (\mathbb{G}, g, p) be the cyclic group and $H : \{0, 1\}^* \to \{0, 1\}^n, H_1 : \{0, 1\}^* \to \mathbb{Z}_p$ be the cryptographic hash functions that will be shared by all users.

KeyGen: The key generation algorithm chooses random numbers $\alpha, \beta \in \mathbb{Z}_p$, computes $g_1 = g^{\alpha}, g_2 = g^{\beta}$, and returns a public/secret key pair (pk, sk) as follows:

$$pk = (g_1, g_2), sk = (\alpha, \beta).$$

Encrypt: The encryption algorithm takes as input a message $m \in \{0, 1\}^n$ and the public key pk. It chooses a random number $r \in \mathbb{Z}_p$ and computes the ciphertext as

$$CT = (C_1, C_2, C_3) = (g^r, (g_2g^T)^r, H(g_1^r) \oplus m)$$
, where $T = H_1(C_1, C_3)$.

Decrypt: The decryption algorithm takes as input CT and the secret key sk. It decrypts the ciphertext by computing

$$M = H(C_1^{sk}) \oplus C_3.$$

It checks the validity of the ciphertext by checking whether C_2 is equal to

 $C_1^{\beta+H_1(C_1,C_3)}.$

Question 5 Is this scheme secure in the IND-CPA security model?

Question 6 Is this scheme secure in the IND-CCA security model?

3.4 Scheme (ElGamal ★)

Let (\mathbb{G}, g, p) be the cyclic group and $H_1 : \{0, 1\}^* \to \{0, 1\}^n, H_2 : \{0, 1\}^* \to \{0, 1\}^{2n}$ be the cryptographic hash functions that will be shared by all users.

KeyGen: The key generation algorithm chooses a random number $\alpha \in \mathbb{Z}_p$, computes $g_1 = g^{\alpha}$, and returns a public/secret key pair (pk, sk) as follows:

$$pk = g_1, sk = \alpha.$$

Encrypt: The encryption algorithm takes as input a message $m \in \{0, 1\}^n$ and the public key pk. It chooses a random number $r \in \mathbb{Z}_p$ and computes the ciphertext as

$$CT = (C_1, C_2) = (g^r, H_2(g_1^r) \oplus [m||H_1(m)])$$

Decrypt: The decryption algorithm takes as input CT and the secret key sk.

- Compute $m||h = H_2(C_1^{sk}) \oplus C_2$
- Return m if and only if $h = H_1(m)$.

Question 7 Is this scheme secure in the IND-CPA security model?

Question 8 Is this scheme secure in the IND-CCA security model?

3.5 Scheme (ElGamal $\star \star$)

Let (\mathbb{G}, g, p) be the cyclic group and $H_1 : \{0, 1\}^* \to \{0, 1\}^n, H_3 : \{0, 1\}^* \to \{0, 1\}^{3n}$ be the cryptographic hash functions that will be shared by all users. Supposing that each group element and each integer inside \mathbb{Z}_p can be also represented with n bits.

KeyGen: The key generation algorithm chooses a random number $\alpha \in \mathbb{Z}_p$, computes $g_1 = g^{\alpha}$, and returns a public/secret key pair (pk, sk) as follows:

$$pk = g_1, sk = \alpha.$$

Encrypt: The encryption algorithm takes as input a message $m \in \mathbb{G}$ and the public key pk. It chooses a random number $r \in \mathbb{Z}_p$ and computes the ciphertext as

$$CT = (C_1, C_2) = (g^r, H_3(g_1^r) \oplus [m||m^r||r])$$

Note: the group elements and integers should be encoded into bit strings before encryption. While decryption should do the encoding in the opposite way.

Decrypt: The decryption algorithm takes as input CT and the secret key sk.

- Compute $m||u||r' = H_3(C_1^{sk}) \oplus C_2$
- Compute $g^{r'}$ and $m^{r'}$.
- Return the message m if $C_1 = g^{r'}$ and $u = m^{r'}$.

Question 9 Is this scheme secure in the IND-CPA security model?

Question 10 Is this scheme secure in the IND-CCA security model?

3.6 Pairing-Based Public-Key Encryption Scheme

Let $(\mathbb{G}, \mathbb{G}_T, g, e, p)$ be the pairing group and $H : \{0, 1\}^* \to \mathbb{Z}_p$ be the cryptographic hash function that will be shared by all users.

KeyGen: The key generation algorithm chooses a random number $\alpha \in \mathbb{Z}_p$, a random group element g_1 , computes $U = e(g, g)^{\alpha}$, and returns a public/secret key pair (pk, sk) as follows:

$$pk = (g_1, U), sk = \alpha.$$

Encrypt: The encryption algorithm takes as input a message $m \in \mathbb{G}_T$ and the public key pk.

- Choose a random key pair of one-time signature (*opk*, *osk*).
- Choose a random $r \in \mathbb{Z}_p$ and compute

$$(C_1, C_2, C_3) = \left((g_1 g^{H(opk)})^r, g^r, U^r \cdot m \right)$$

- Use osk to sign (C_1, C_2, C_3) to obtain signature denoted by C_4 .
- Set $C_5 = opk$.

The ciphertext is $CT = (C_1, C_2, C_3, C_4, C_5)$.

Decrypt: The decryption algorithm takes as input CT and the secret key sk.

- Verify that C_4 is a valid signature on (C_1, C_2, C_3) with the public key C_5 .
- Verify that $e(C_1,g) = e(g_1g^{H(C_5)},C_2)$
- Choose a random $s \in \mathbb{Z}_p$ and compute

$$(d_1, d_2) = (g^{\alpha}(g_1g^{H(C_5)})^s, g^s)$$

Return message by computing

$$m = \frac{C_3 \cdot e(d_2, C_1)}{e(d_1, C_2)}$$

Question 11 Is this scheme secure in the IND-CPA security model?

Question 12 Is this scheme secure in the IND-CCA security model?

3.7 Generic-Construction Scheme

Let CT be a ciphertext generated from an IND-CPA secure encryption scheme. Suppose there is a one-time signature scheme.

- Suppose we have CT computed using pk.
- Run the one-time signature scheme to generate a key pair (*opk*, *osk*)
- Use osk to sign (opk, CT) and the signature is σ .
- Set $CT^* \leftarrow (opk, CT, \sigma)$

Question 13 What is the purpose of computing CT^* instead of CT?

Question 14 *Is the above solution correct?*

3.8 Scheme (Multi-Message ElGamal)

Let (\mathbb{G}, g, p) be the cyclic group that will be shared by all users.

KeyGen: The key generation algorithm chooses random numbers $\alpha_1, \alpha_2 \in \mathbb{Z}_p$, computes $g_1 = g^{\alpha_1}, g_2 = g^{\alpha_2}$, and returns a public/secret key pair (pk, sk) as follows:

 $pk = (g_1, g_2), sk = (\alpha_1, \alpha_2).$

Encrypt: The encryption algorithm takes as input a message vector $M = (m_1, m_2, \dots, m_n) \in \mathbb{G}^n$ and the public key pk. It chooses random numbers $r_1, r_2 \in \mathbb{Z}_p$ and computes the ciphertext as

$$CT = (U_1, U_2, C_1, C_2, \cdots, C_n)$$

= $(g^{r_1}, g^{r_2}, m_1 \cdot g_1^{r_1 2^1} \cdot g_2^{r_2 \cdot 3^1}, m_2 \cdot g_1^{r_1 2^2} \cdot g_2^{r_2 \cdot 3^2}, \cdots, m_n \cdot g_1^{r_1 2^n} \cdot g_2^{r_2 \cdot 3^n})$

Decrypt: The decryption algorithm takes as input CT and the secret key sk.

- Compute $V_0 = U_1^{\alpha_1}, W_0 = U_2^{\alpha_2}$;
- Compute $V_1 = V_0^2, W_1 = W_0^3$ and $m_1 = \frac{C_1}{V_1 \cdot W_1}$
- Compute $V_2 = V_1^2, W_2 = W_1^3$ and $m_2 = \frac{C_2}{V_2 \cdot W_2}$
- :

• Compute
$$V_n = V_{n-1}^2$$
, $W_n = W_{n-1}^3$ and $m_n = \frac{C_n}{V_n \cdot W_n}$

It returns the decrypted messages $M = (m_1, m_2, \cdots, m_n)$

Question 15 Is this scheme secure in the OW-CPA security model¹?

Question 16 Is this scheme secure in the IND-CPA security model?

¹OW= One Way

4 From IBE to ABE

4.1 Scheme (Identity-Based Encryption)

Setup: The setup algorithm chooses $(\mathbb{G}, \mathbb{G}_T, g, e, p)$ and a cryptographic hash function $H : \{0,1\}^* \to \mathbb{G}$. Next, it chooses random numbers $\alpha, \beta, \gamma \in \mathbb{Z}_p$ and compute $g_1 = g^{\alpha}, g_2 = g^{\beta}, g_3 = g^{\gamma}$. The master key pair is

$$mpk = (\mathbb{G}, \mathbb{G}_T, g, e, p, H, g_1, g_2, g_3), msk = (\alpha, \beta, \gamma).$$

KeyGen: The key generation algorithm takes as input an identity $ID \in \{0, 1\}^*$ and returns a private key d_{ID} of ID as follow:

$$d_{ID} = g^{\frac{\gamma}{\alpha + H(ID)\beta}}.$$

Encrypt: The encryption algorithm takes as input a message $m \in \mathbb{G}_T$, identity ID, and the master public key mpk. It chooses a random $r \in \mathbb{Z}_p$ and computes

$$CT = (C_1, C_2, C_3) = \left((g_1 g_2^{H(ID)})^r, g^r, e(g_3, g)^r \cdot m \right)$$

Decrypt: The decryption algorithm takes as input CT and the private key d_{ID} .

- Verify that CT was created for ID by $e(C_1, g) = e(g_1g_2^{H(ID)}, C_2)$.
- Decrypt the ciphertext by

$$M = \frac{C_3}{e(C_1, d_{ID})}$$

Question 17 Is this scheme secure in the IND-ID-CPA security model?

Question 18 Is this scheme secure in the IND-ID-CCA security model?

4.2 Scheme (Identity-Based Encryption)

Setup: The setup algorithm chooses $(\mathbb{G}, \mathbb{G}_T, g, e, p)$ and a cryptographic hash function $H : \{0, 1\}^* \to \mathbb{Z}_p$. Next, it chooses random numbers α, β and computes $g_1 = g^{\alpha}, g_2 = g^{\beta}$. Then, it chooses a random group element $h \in \mathbb{G}$. The master key pair is

$$mpk = (\mathbb{G}, \mathbb{G}_T, g, e, p, H, h, g_1, g_2), msk = (\alpha, \beta).$$

KeyGen: The key generation algorithm takes as input an identity $ID \in \{0, 1\}^*$. It chooses a random number $r \in \mathbb{Z}_p$ and returns a private key d_{ID} of ID as follow:

$$d_{ID} = (g^{\alpha\beta}(h^{H(ID)})^r, g^r).$$

Encrypt: The encryption algorithm takes as input a message $m \in \mathbb{G}_T$, identity ID, and the master public key mpk. It chooses a random $s \in \mathbb{Z}_p$ and computes

$$CT = (C_1, C_2, C_3) = \left((h^{H(ID)})^s, g^s, e(g_1, g_2)^s \cdot m \right)$$

Decrypt: The decryption algorithm takes as input CT and the private key d_{ID} .

• Decrypt the ciphertext by

$$m = \frac{C_3 \cdot e(C_1, d_{ID}^2)}{e(C_2, d_{ID}^1)}$$

Question 19 Is this scheme secure in the IND-ID-CPA security model?

Question 20 Is this scheme secure in the IND-ID-CCA security model?

4.3 Scheme (ElGamal Based IBE)

Setup: The setup algorithm chooses (\mathbb{G}, g, p) and a cryptographic hash function $H : \{0, 1\}^* \to \mathbb{Z}_p$. Next, it a chooses random number $\alpha \in \mathbb{Z}_p$ and compute $g_1 = g^{\alpha}$. The master key pair is

$$mpk = (\mathbb{G}, q, p, H, q_1), \ msk = \alpha.$$

KeyGen: The key generation algorithm takes as input an identity $ID \in \{0, 1\}^*$ and returns a private key d_{ID} of ID as follow:

$$d_{ID} = \frac{\alpha}{H(ID)} \mod p.$$

Encrypt: The encryption algorithm takes as input a message $m \in \mathbb{G}$, identity *ID*, and the master public key mpk. It chooses a random $r \in \mathbb{Z}_p$ and computes

$$CT = (C_1, C_2) = \left(g^{r \cdot H(ID)}, g_1^r \cdot m\right)$$

Decrypt: The decryption algorithm takes as input (ID, CT) and the private key d_{ID} . It decrypts the ciphertext by

$$m = \frac{C_2}{C_1^{d_{ID}}}.$$

Question 21 Is this scheme secure in the IND-ID-CPA security model without Key Query?

Question 22 Is this scheme secure in the IND-ID-CPA security model with Key Query?

4.4 Scheme (Identity-Based Broadcast Encryption)

Setup: The setup algorithm chooses $(\mathbb{G}, \mathbb{G}_T, g, e, p)$ and a cryptographic hash function $H : \{0, 1\}^* \to \mathbb{Z}_p$. Next, it chooses a random number $\alpha \in \mathbb{Z}_p$ and compute $g_1 = g^{\alpha}$. The master key pair is

$$mpk = (\mathbb{G}, \mathbb{G}_T, g, e, p, H, g_1), msk = \alpha.$$

KeyGen: The key generation algorithm takes as input an identity $ID \in \{0, 1\}^*$ and returns a private key d_{ID} of ID as follow:

$$d_{ID} = g^{\frac{1}{\alpha + H(ID)}}.$$

Encrypt: The encryption algorithm takes as input a message $m \in \mathbb{G}_T$, two identities ID_1, ID_2 , and the master public key mpk. It chooses a random $r \in \mathbb{Z}_p$ and computes

$$CT = (C_1, C_2, C_3) = \left((g_1 g^{H(ID_1)})^r, \ (g_1 g^{H(ID_2)})^r, \ e(g, g)^r \cdot m \right)$$

Note: This is an encryption for two identities only.

Decrypt: The decryption algorithm takes as input (ID_1, ID_2, CT) and the private key d_{ID_i} . It decrypts the ciphertext by computing

$$m = \frac{C_3}{e(C_i, d_{ID_i})}.$$

Question 23 Is this scheme secure in the IND-ID-CPA security model?

Question 24 Is this scheme secure in the IND-ID-CCA security model?

4.5 Scheme (Attribute-Based Encryption)

Suppose that a private key is created for an attribute set denoted by T. An application scenario requires that when a message is encrypted with an attribute set E, the private key of T can decrypt this ciphertext if and only if E is a subset of T.

Setup: The setup algorithm chooses $(\mathbb{G}, \mathbb{G}_T, g, e, p)$ and a cryptographic hash function $H : \{0, 1\}^* \to \mathbb{Z}_p$. Next, it chooses a random number $\alpha \in \mathbb{Z}_p$, a random group element h, and compute $g_1 = g^{\alpha}, U = e(h, h)^{\alpha}$. The master key pair is

$$mpk = (\mathbb{G}, \mathbb{G}_T, g, e, p, H, g_1, h, U), msk = \alpha.$$

KeyGen: The key generation algorithm takes as input an attribute set $\{A : A \in T\}$. It chooses a random number $s \in \mathbb{Z}_p$ and returns a private key d_T of T as follow:

$$d_T = \{h^{\alpha}g^s, h^{\frac{-s}{\alpha+H(A)}} : A \in T\}.$$

Encrypt: The encryption algorithm takes as input a message $m \in \mathbb{G}_T$, the attribute set $E = \{A_1, A_2\}$, and the master public key mpk. It chooses a random $r_1, r_2 \in \mathbb{Z}_p$ and computes

$$CT = (C_1, C'_1, C_2, C'_2, C_3) = \left(h^{r_1}, (g_1 g^{H(A_1)})^{r_1}, h^{r_2}, (g_1 g^{H(A_2)})^{r_2}, U^{(r_1 + r_2)} \cdot m\right)$$

Decrypt: The decryption algorithm takes as input (A_1, A_2, CT) and the private key d_T of $T = \{A_1, A_2, A_3\}$. It decrypts the ciphertext by computing

$$m = \frac{C_3}{e(h^{\alpha}g^s, C_1) \cdot e(h^{\frac{-s}{\alpha + H(A_1)}}, C_1') \cdot e(h^{\alpha}g^s, C_2) \cdot e(h^{\frac{-s}{\alpha + H(A_2)}}, C_2')}.$$

Question 25 Is this scheme secure in the IND-ID-CPA security model?

Question 26 Is this scheme secure in the IND-ID-CCA security model?