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Abstract

Given a free action of a group G on a directed graph E we show that
the crossed product of C∗(E), the universal C∗–algebra of E, by the
induced action is strongly Morita equivalent to C∗(E/G). Since every
connected graph E may be expressed as the quotient of a tree T by an
action of a free group G we may use our results to show that C∗(E) is
strongly Morita equivalent to the crossed product C0(∂T )×G, where
∂T is a certain 0–dimensional space canonically associated to the tree.

Dedicated to Marc A. Rieffel on the occasion of his 60th birthday.

1 Introduction

The purpose of this paper is to study free actions of countable groups on
directed graphs and their associated C∗–algebras. In previous work we have
shown that given a directed graph E there is a C∗–algebra C∗(E) which
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satisfies a certain universal property (see [KPR, Theorem 1.2]). If a countable
group G acts on E then by the universal property there is an induced action
of G on C∗(E). If the action is free we show that the resulting crossed
product C∗(E) × G is strongly Morita equivalent to C∗(E/G) where E/G
is the quotient graph; more precisely C∗(E) × G ∼= C∗(E/G) ⊗ K (`2(G)).
Moreover, given a connected graph E, one can associate in a canonical way
a universal covering tree T (cf. [H], [LS]) together with a group G which acts
freely on T (and so is a free group cf. [Se]) such that T/G ∼= E. Let ∂T
be the boundary of T , then the action of G on T induces an action of G
on ∂T ; applying our earlier results and using the fact that C∗(T ) is strongly
Morita equivalent to C0(∂T ) in an equivariant way, we then show that C∗(E)
is strongly Morita equivalent to C0(∂T )×G.

We now briefly describe some of the basic notions we shall be using in
this paper: A directed graph E consists of countable sets E0 of vertices and
E1 of edges, together with maps r, s : E1 → E0 describing the range and
source of edges. The graph is row finite if every vertex emits only finitely
many edges and locally finite if in addition each vertex receives only finitely
many edges. To avoid technical difficulties, in this paper we shall assume
that every vertex in E emits an edge (i.e. s(E1) = E0). Given a directed
graph E, a representation of E consists of a set {Pv : v ∈ E0} of mutually
orthogonal projections and a set {Se : e ∈ E1} of partial isometries satisfying

Se
∗Se = Pr(e) =

∑
s(f)=r(e)

SfSf
∗ for each e ∈ E1, (1)

(for more details see [KPR, §1]). In [KPR, Theorem 1.2] we showed that
there is a universal C∗–algebra denoted C∗(E) which is generated by non–
zero partial isometries and projections satisfying (1). Much of our analysis of
C∗(E) is done by using a groupoid model for C∗(E) which was developed in
[KPRR]: Following [R, §III.2] in [KPRR, §2] we use the shift–tail equivalence
relation on the space E∞ of all infinite paths in a row–finite directed graph
E to construct a locally compact, second countable, r–discrete groupoid GE

whose unit space G(0)
E may be identified with E∞. By [KPR, Remark 1.3] if

E is row finite then C∗(E) ∼= C∗(GE) and we shall identify these C∗–algebras
without comment throughout this paper.

Let A ∈ Mn(Z+) with no zero row or column, then there is a graph EA

naturally associated to A such that the Cuntz–Krieger algebra OA is iso-
morphic to C∗(EA). The class of graph C∗–algebras includes the Doplicher–
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Roberts algebras of [DR, §3] and up to strong Morita equivalence all AF
algebras as well (see [KPR, Theorem 2.4]).

This paper is organised as follows: in the second section we consider a
labelling of the edges of a graph F by elements of a countable group G, that
is, a function c : F 1 → G. This allows us to define a skew–product graph
F (c) in analogy with a skew–product groupoid (see [R, I.1.6]). In the third
section we discuss the notion of the free action of a countable group G on
the vertices of a directed graph E, the quotient E/G then has the structure
of a directed graph. These two constructions are linked in the following way:
if c : F 1 → G is a function then G acts freely on F (c) with F (c)/G ∼= F ,
secondly if G acts freely on E then there is a function c : (E/G)1 → G such
that (E/G)(c) ∼= E (this isomorphism is G–equivariant). It may therefore
be appropriate to regard E as the graph theoretical analog of a principal G–
bundle over E/G (and c may be regarded as the analog of a G–valued cocycle
that provides patching data). The action of G on E induces a natural action
on the associated C∗–algebra so that the crossed product is strongly Morita
equivalent to the C∗–algebra of the quotient graph (by analogy with Green’s
Theorem [G, Theorem 14]). Combining Corollaries 2.5, 3.9 and 3.10 we have
the following result:

1.1 Theorem: Let E be a locally finite directed graph and suppose that
λ : G → Aut (E) is a free action of a countable group G on the vertices of
E. Then

C∗(E)×λ G ∼= C∗(E/G)⊗K
(
`2(G)

)
,

where λ also denotes the induced action of G on C∗(E); moreover if G is

abelian then there is an action α of Ĝ on C∗(E/G) such that

C∗(E) ∼= C∗(E/G)×α Ĝ,

and under this isomorphism λ is identified with α̂.

In the final section we firstly show in 4.3 that the C∗–algebra of a row
finite directed tree T is strongly Morita equivalent to C0(∂T ) where ∂T is the
boundary of T , obtained as the quotient of the infinite path space T∞ by shift
tail equivalence. Then for a connected directed graph E by choosing a base
vertex ? ∈ E0 and considering the collection of undirected paths beginning at
? we construct the universal covering tree T = (E, ?) of E, in analogy with
the universal covering space of a path–connected topological space. The
fundamental group G of the graph E, which consists of undirected loops at
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?, acts freely on T in such a way that T/G ∼= E. The action of G on T induces
an action of G on ∂T , the boundary of T . Since the equivalence of C∗(T ) and
C0(∂T ) is G–equivariant, we obtain (see Lemma 4.10 and Corollary 4.14):

1.2 Theorem: Let E be connected row finite directed graph, then C∗(E)
is strongly Morita equivalent to C0(∂T )×G where ∂T is the boundary of the
universal covering tree T of E and G is the fundamental group of E based
at the vertex used to construct T . Moreover G is a free group, and if E0 is
finite then G ∼= Fn where n = |E1| − |E0|+ 1.

Earlier results of this type are to be found in [ETW, Sp, SZ]: The Toeplitz
extension of On arising in the Fock space construction was shown to be a
crossed-product by a free semigroup in [ETW]. In [Sp], certain Cuntz-Krieger
algebras are exhibited as crossed products of unital abelian C*-algebras by
free products of cyclic groups — the action arises as a boundary action.
Other results of this nature may be found in [SZ].

The first author would like to thank the second author and his colleagues
at the University of Newcastle for their hospitality during a recent visit. He
also wishes to thank Jacqui Ramagge for an enlightening conversation on
Cayley graphs at an early stage of this project.

2 Skew product graphs

In this section G shall always be a countable group, and E a row–finite
directed graph unless otherwise stated. The set of paths µ in E of length
|µ| = k is denoted Ek and the finite path space is denoted E∗ the maps r, s
extend naturally to E∗. A path µ ∈ E∗ with |µ| ≥ 1 is said to be a loop
if r(µ) = s(µ). The shift tail equivalence relation for x, y ∈ E∞ is given by
x ∼k y if and only if there is an N ≥ 1 and k ∈ Z such that xi = yi−k for
i ≥ N . The groupoid GE then consists of triples (x, k, y) such that x ∼k y in
E∞, for more details see [KPRR, §2]. Note that our sign convention agrees
with that used by Renault for the Cuntz groupoid (see [R, p. 140]) but it
differs from that used in [KPRR, KPR] (it clearly does not affect the results
contained therein).

2.1 Definitions: Let E be a directed graph, and c : E1 → G be a function.
We may then form the skew product graph E(c) = (G × E0, G × E1, r, s)
where

r(g, e) = (gc(e), r(e)) and s(g, e) = (g, s(e)). (2)
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Let E,F be two directed graphs, the cartesian product graph is defined
to be E × F = (E0 × F 0, E1 × F 1, r, s) where r(e, f) = (r(e), r(f)) and
s(e, f) = (s(e), s(f)).

In the literature (see [GT, §2.2.1]) E(c) is sometimes referred to as a “derived
graph” (the graph together with labelling, c : E1 → G, is referred to as a
“voltage graph”). Since every vertex in E emits an edge it follows from (2)
that every vertex in E(c) emits an edge and so by [KPR, Remark 1.3] we
may identify C∗(GE(c)) with C∗(E(c)). If E is any directed graph, G = Z
and c(e) = 1 for all e ∈ E1 then E(c) is identical to Z × E where Z is the
graph shown below:

• • • • •

2.2 Examples: Suppose that F is the directed graph
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and define c : F 1 → G = Z by c(a) = 0 and c(b) = 1, then F (c) is given by
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(see [KPR, Example 3.10]). If E is the graph
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then Z × E is given by
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If c(e) = 1G for all e ∈ E1, then E(c) is the disjoint union of |G| isomorphic
copies of E.
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We may extend the definition of c to E∗ by defining c(w) = 1G for w ∈
E0 and c(µ) = c(µ1) . . . c(µ|µ|) where µ = (µ1, . . . , µ|µ|) ∈ E∗. Note that
c(µν) = c(µ)c(ν) for all µ, ν ∈ E∗ with r(µ) = s(ν). Define c̃ : GE → G by
c̃(x, k, y) = c(µ)c(ν)−1 where x = µz , y = νz, |µ| − |ν| = k and z ∈ E∞.
To see that our definition of c̃ is well–defined suppose that (x, k, y) ∈ GE

is interpreted as x = µγz′, y = νγz′ where µ, ν, γ ∈ E∗, |µ| − |ν| = k and
z′ ∈ E∞, then

c̃(x, k, y) = c(µγ)c(νγ)−1 = c(µ)c(ν)−1.

2.3 Lemma: Let E be a directed graph and c : E1 → G a function then
E(c)n may be identified with G×En and E(c)∞ with G×E∞. Under these
identifications x′ ∼k y

′ in E(c)∞ if and only if x′ = (g, x), y′ = (h, y) where
x = µz ∼k νz = y in E∞ and hc(ν) = gc(µ) in G; moreover the function
c̃ : GE → G is a continuous 1–cocycle.

Proof:
From (2) we may see that a sequence of edges (gi, ei)

n
i=1 belongs to E(c)n

if and only if r(ei) = s(ei+1) and

gi+1 = gic(ei) = g1c(e1) · · · c(ei) (3)

for i = 1, . . . , n − 1. Set µ = (ei)
n
i=1 ∈ En; it follows from (3) that gi is

completely specified by g1 and c(e1), . . . , c(ei−1) so we may identify E(c)n

with G × En by (gi, ei)
n
i=1 7→ (g1, µ), where r(g, µ) = (gc(µ)), r(µ)) and

s(g, µ) = (g, s(µ)). Continuing in this way we may identify E(c)∞ with
G× E∞ by (gi, xi)

∞
i=1 7→ (g1, (xi)

∞
i=1).

Suppose that x′ ∼k y
′ in E(c)∞ then there is N ∈ N such that x′i = y′i−k

for i ≥ N . Since

x′i = (gi, xi) = (g1c(x1) · · · c(xi−1), xi)
y′i−k = (hi−k, yi−k) = (h1c(y1) · · · c(yi−k−1), yi−k)

(4)

we may deduce that x = µz ∼k νz = y in E∞ where |µ| = N and g1c(µ) =
h1c(ν) in G. Suppose that x = µz ∼k νz = y in E∞ and gc(µ) = hc(ν) if we
define x′ = (g, x) and y′ = (h, y) then by (4) we may see that x′i = y′i−k for
i ≥ |µ| and so x′ ∼k y

′ in E(c)∞.
Observe that if x ∼k y and y ∼` z then without loss of generality x = µt,

y = νt, z = γt, where t ∈ E∞, |µ| − |ν| = k and |ν| − |γ| = `, then

c̃((x, k, y)(y, `, z)) = c̃(x, k, z) = c(µ)c(γ)−1 = c(µ)c(ν)−1c(ν)c(γ)−1 = c̃(x, k, y)c̃(y, `, z),
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and so c̃ is a homomorphism. Since c̃ is locally constant it is evidently
continuous. �

Note that if c : E1 → Z is defined by c(e) = 1 for all e ∈ E1, then c̃(x, k, y) =
k for all (x, k, y) ∈ GE. From [R, Proposition II.3.8] it follows that the skew
product groupoid GE(c̃) is r–discrete and amenable if E is locally finite (see
[KPRR, Corollary 5.5]).

2.4 Theorem: Let E be a directed graph and c : E1 → G a function,
then GE(c̃) ∼= GE(c).

Proof:
Consider the map φ : GE(c̃) → GE(c) given by φ([x, k, y], g) = (x′, k, y′)

where x′ = (g, x) and y′ = (gc̃([x, k, y]), y); note that x′ ∼k y
′ in E(c)∞ from

2.3, and so (x′, k, y′) ∈ GE(c). For

(([x, k, y], g), ([y, `, z], gc̃([x, k, y]))) ∈ GE(c̃)(2)

we have

φ([x, k, y], g)φ([y, `, z], gc̃([x, k, y])) = (x′, k, y′)(y′, `, z′) where z′ = (gc̃([x, k + `, z]), z) ∈ E(c)∞

= (x′, k + `, z′) = φ([x, k + `, z], g),

hence φ is multiplicative. It is then straightforward to show that φ is bijective
and preserves composability, so it is an isomorphism of groupoids. �

2.5 Corollary: If E is a directed graph and c : E1 → G is a function
where G is a abelian group then there is an action α of Ĝ on C∗(E) such
that

αχ(Se) = 〈χ, c(e)〉Se

for all e ∈ E1 and χ ∈ Ĝ; moreover,

C∗(E(c)) ∼= C∗(E)×α Ĝ.

Proof:
Since C∗(E) is defined to be the universal C∗–algebra generated by the

Se subject to (1) and α preserves these relations it is clear that it defines an

action of Ĝ on C∗(E). One checks that α is given by the cocycle c̃ in the
sense that if f ∈ Cc(GE) ⊂ C∗(E) then (αχf)(γ) = 〈χ, c̃(γ)〉f(γ). From 2.4
C∗(GE(c)) ∼= C∗(GE(c̃)), it then suffices to show that this latter C∗–algebra is

a crossed product of C∗(GE) by Ĝ; but this follows by [R, II.5.7]. �
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This result may to be used to show that C∗(E) belongs to N , the bootstrap
class to which the UCT applies (see [RS, Theorem 1.17]). If G = Z and
c(e) = 1 for all e ∈ E1 then the associated action α of T = Ẑ on C∗(E) is
referred to as the gauge action (see [E]).

2.6 Proposition: Let E be a directed graph, then C∗(Z×E) ∼= C∗(E)×α

T is an AF algebra. Moreover, C∗(E) belongs to the bootstrap class N .

Proof:
We claim that Z × E has no loops: by 2.3 any finite path µ′ ∈ (Z × E)k

is of the form µ′ = (a, µ) for some a ∈ Z and µ ∈ Ek. Suppose µ′ ∈ (Z×E)k

is a loop then r(µ′) = s(µ′) and so a = a + k, which means that k = 0
but |µ′| = k ≥ 1 which gives us a contradiction. Hence by [KPR, Theorem
2.4] and 2.5 C∗(E) ×α T is an AF algebra. By the Takesaki-Takai duality
theorem (see [P, Theorem 7.9.3]) one has:

C∗(E)⊗K(L2(T)) ∼= (C∗(E)×α T)×α̂ Z;

we see that C∗(E) is strongly Morita equivalent to the crossed product of
an AF algebra by a Z–action. Since the bootstrap class N contains all type
I C∗–algebras, is closed under inductive limits and crossed products by Z,
C∗(E) is in N . �

2.7 Note: Let E be a directed graph and c : E1 → G a function. Given
µ ∈ E∗, then (g, µ) is a loop in E(c) if and only if µ is a loop in E and c
satisfies a Kirchoff condition on µ, that is c(µ) = 1G. It follows that C∗(E(c))
is an AF algebra iff c(µ) 6= 1G for every loop µ ∈ E∗.

2.8 Proposition: Let E be a directed graph such that every vertex receives
an edge then C∗(Z×E) is strongly Morita equivalent to the fixed point algebra
C∗ (E)α.

Proof:
Firstly we show that C∗(GZ×E) is strongly Morita equivalent to C∗(R)

where R denotes the reduction of the groupoid GZ×E to the clopen set N =
{(0, x) : x ∈ E∞}. It suffices to show that R is full reduction of GZ×E

([MRW, Theorem 2.8]); but this follows immediately from the fact that S =
{(0, v) : v ∈ E0} is cofinal in Z ×E since every vertex in E receives an edge.
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Next we show that the groupoids R and c̃−1(0) are isomorphic where
c̃ : GE → Z is given by c̃(x, k, y) = k. Since (x′, k, y′) ∈ R if and only if
x′ = (0, x), y′ = (0, y) and k = 0 (see 2.3), we may define ψ : R → c̃−1(0),
by ψ(x′, 0, y′) = (x, 0, y), where x, y ∈ E∞. One easily checks that ψ is a
groupoid isomorphism and hence induces an isomorphism of the correspond-
ing C∗–algebras.

Finally, by adapting [PR, Lemma 2.2.3] we may also show that C∗(c̃−1(0))
is isomorphic to C∗(E)α. �

More generally, suppose that G is an abelian group, and c : E1 → G a
function. If for every v ∈ E0 and g ∈ G there is a path µ ∈ E∗ with r(µ) = v

and c(µ) = g then the fixed point algebra C∗(E)α of the dual action Ĝ on

C∗(E) is stably isompmorphic to C∗(E)×α Ĝ ∼= C∗(E(c)).
Cayley graphs of finitely generated groups (see [GT, §1.2.4], [St, §0.5.7])

form a key class of examples of skew products:

2.9 Definition: Let G be a group with a finite set of generators g1, . . . , gn.
The (right) Cayley graph of G with respect to g1, . . . , gn is the directed
graph EG where E0

G = G, E1
G = G×{g1, . . . , gn} with range and source maps

given by r(h, gi) = hgi and s(h, gi) = h for i = 1, . . . , n.

2.10 Examples: (1) Let G be a group with generators g1, . . . , gn, let Bn

be the directed graph with a single vertex and edges {1, . . . , n} if c : Bn → G
is given by c(k) = gk for k = 1, . . . , n, then Bn(c) ∼= EG (see [GT, Theorem
2.2.3]).
(2) In 2.2 graph E is the Cayley graph for Z2 = {0, 1} with respect to the
generators 0, 1. Graph F (c) is the Cayley graph of Z with respect to the
generators 0, 1.

Let E be a directed graph, c : E1 → G a function. E is said to be c–cofinal
if for every x ∈ E∞, v ∈ E0 and g ∈ G there is an µ ∈ E∗ and n ≥ 1 such
that s(µ) = v and r(µ) = s(xn) and if ν = (x1, . . . , xn−1) then c(ν)c(µ)−1 = g
(if n = 1 we put ν = s(x)). The following result is an immediate consequence
of the definition of cofinality (see [KPRR, Corollary 6.8]) and c–cofinality.

2.11 Proposition: Let E be a directed graph and c : E1 → G a function
then E(c) is cofinal if and only if E is c–cofinal.
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2.12 Notes: (1) By [R, I.4.14] it follows that E is c–cofinal if and only
if E is cofinal and the asymptotic range of the induced cocycle c̃ on GE at x
exhausts G (i.e. Rx

∞(c̃) = G) for all x ∈ E∞.
(2) If E0 is finite, every vertex receives an edge and c(e) = 1 for all e ∈ E1

then c–cofinality is equivalent to E being aperiodic, in the sense that there
is a k ≥ 1 such that for every u, v ∈ E0 we have µ ∈ Ek such that s(µ) = u,
r(µ) = v. No graph with E0 infinite can be aperiodic (recall that we have
assumed that E is row-finite).
(3) Now suppose that E satisfies condition (L) of [KPR, §3] (that is, each
loop has an exit); it follows that E(c) also satisfies condition (L). Hence,
by [KPRR, Corollary 6.8] C∗(E(c)) is simple iff E is c–cofinal (note that if
a directed graph is cofinal, condition (L) is equivalent to condition (K) of
[KPRR, §6]). In particular, if c(e) = 1 for all e ∈ E1 and E is c–cofinal then
C∗(Z × E) is simple, as is the fixed point algebra C∗(E)α (cf. [CK, p.253]).

3 Groups acting on directed graphs

The following ideas and concepts are adapted from [GT, §1.1.6] or [Se, Defini-
tion 1]: let E,F be two directed graphs, then a graph morphism f : E → F
is a pair of maps f = (f 0, f1) where f i : Ei → F i for i = 0, 1 are such that
f 0(r(e)) = r(f 1(e)) and f 0(s(e)) = s(f 1(e)), for all e ∈ E1. To keep our
notation simple we will often omit the superscript on graph morphisms. A
graph morphism f : E → F is said to have the unique path lifting prop-
erty if given u ∈ E0 and e ∈ F 1 with s(e) = f(u), then there is a unique
e′ ∈ E1 such that s(e′) = u and f(e′) = e. There is a natural notion of
isomorphism of directed graphs; the group of automorphisms of a graph E
is denoted Aut (E).

Let E be a directed graph and G a countable group, then G acts on E if
there is a group homomorphism g 7→ λg ∈ Aut(E). The action λ of G on E
is called free if λ acts freely on the vertices, that is if λgv = v for any v ∈ E0

then g = 1G. Note that in this case the action of G is also free on the edges
of E.

3.1 Lemma: Let E be a row finite directed graph and λ : G → Aut (E)
be an action, then there is an induced action (which we also denote λ) of G
on GE by homeomorphisms which is free if λ is.
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Proof:
Let λ : G→ Aut (E), thenG acts on E∗ and E∞ by defining (λgx)i = λgxi

for all i. It is easy to check that the action of G on E∞ preserves shift
tail equivalence, since x ∼k y if and only if λgx ∼k λgy for x, y ∈ E∞.
Hence G acts on GE by defining λg(x, k, y) = (λg, k, λgy), and then λ−1

g =
λg−1 ; moreover for each g ∈ G, λg is a homeomorphism since λgZ(µ, ν) =
Z(λgµ, λgν) for µ, ν ∈ E∗. �

The quotient graph E/G = ((E/G)0, (E/G)1, r, s) consists of the equiva-
lence classes of vertices and edges under the action of G, together with range
and source maps r([e]) = [r(e)], and s([e]) = [s(e)] which one may check are
well–defined. The quotient map q0 : v 7→ [v], q1 : e 7→ [e] is a surjective
graph morphism q : E → E/G which has the unique path lifting property.

An action λ : G→ Aut (E) as above also induces an action of G on C∗(E)
which, to simplify notation, we denote λ. One has λg(Se) = Sλg(e). We show
below (see 3.10) that if G acts freely on E, then C∗(E)×λG ∼= C∗(E/G)⊗
K (`2(G)) .

3.2 Examples: (1) If G is a group with generators g1, . . . , gn, then G acts
naturally on its Cayley graph EG by: β0

g(h) = gh and β1
g(h, gi) = (gh, gi),

for all g, h ∈ G and i = 1, . . . , n. The action is clearly free, and transitive on
the vertices of EG (see [GT, Theorem 1.2.5]). In fact it is easy to see that
EG/G ∼= Bn; which from 2.10(1) is a special case of (2) below.
(2) Let E be a directed graph and c : E1 → G a function then there is a
natural free action γ of G on E(c) defined by

γ0
g(h, v) = (gh, v), γ1

g(h, e) = (gh, e), (5)

moreover E(c)/G ∼= E (see [GT, Theorem 2.2.1]).

3.3 Note: Conversely, if G acts freely on E then by [GT, Theorem 2.2.2]
there is a function c : (E/G)1 → G such that (E/G)(c) ∼= E in an equivariant
way (the function c will be unique up to a “coboundary”).

3.4 Proposition: Let E be a locally finite graph such that C∗(E) is purely
infinite, then

(i) if f : E → F is a surjective graph morphism which has the unique path
lifting property then C∗(F ) is purely infinite;

11



(ii) if G is a countable group and c : E1 → G is a function such that every
vertex v ∈ E0 connects to a loop µ ∈ E∗ with c(µ) = 1G, then C∗(E(c))
is purely infinite.

Proof:
By [KPR, Theorem 3.9] C∗(E) is purely infinite if and only if E satisfies

condition (L), i.e. every loop has an exit, and every vertex in E connects
to a loop. To show that C∗(F ) is purely infinite it suffices to show that
every vertex connects to a loop with exit (for then every loop has an exit).
Given u ∈ F 0, then since f is surjective there is v ∈ E0 with f(v) = u.
By hypothesis C∗(E) is purely infinite so v connects via ν ∈ E∗ to a loop
µ ∈ E∗ with exit; without loss of generality we may assume that µ has an
exit d 6= mu1 at s(µ). Since f is a graph morphism f(µ) is a loop in F ∗;
moreover, by the unique path lifting property f(d) 6= f(µ1). Hence the loop
f(µ) ∈ F ∗ has an exit and so u connects via f(ν) to a loop f(µ) with exit.

Recall from 2.7 that every loop in E(c) is of the form (g, µ) where µ ∈ E∗

is a loop with c(µ) = 1G. By hypothesis µ ∈ E∗ has an exit, and so from
(2) (g, µ) ∈ E(c)∗ has an exit. Since every w ∈ E0 connects via ν ∈ E∗ to a
loop µ we may see that every (g, w) ∈ E(c)0 connects via (g, ν) ∈ E(c)∗ to a
loop (gc(ν), µ) ∈ E(c)∗. Hence by [KPR, Theorem 3.9] we may deduce that
C∗(E(c)) is purely infinite. �

3.5 Corollary: Let E be a locally finite graph such that C∗(E) is purely
infinite

(i) if a countable group G acts freely on E, then C∗(E/G) is purely infinite;

(ii) if c : E1 → G is a function where G is a countable group in which every
element has finite order, then C∗(E(c)) is purely infinite.

Proof:
For (i) observe that the quotient map q : E → E/G is a surjective graph

morphism with the unique path lifting property. For (ii) observe that if
µ ∈ E∗ is a loop and c(µ) has order n in G then c(µn) = 1G and so every
vertex in E connects to a loop ν ∈ E∗ with c(ν) = 1G. �

12



3.6 Notes: (1) The pair F , and c : F 1 → Z given in 2.2 satisfy the
hypotheses of 3.4(ii).
(2) From 3.2(2) and 3.4(i) given a directed graph E, and a function c :
E1 → G such that C∗(E(c)) is purely infinite then C∗(E) is purely infinite.
However the converse is not true: if C∗(E) is purely infinite then C∗(E(c))
is not necessarily purely infinite – for any graph E, Z ×E has no loops (see
graphs E and Z × E in 2.2).

For our next result we need the following fact about groupoids which is
certainly well known; as we were unable to find an explicit reference we
provide a proof (cf. [R, Proposition I.1.8 (i)]):

3.7 Proposition: Let G be an amenable r-discrete groupoid and c : G →
G be a continuous 1–cocycle, where G is a countable group, and let β be the
action of G on G(c) given by (see [R, p.9]):

βa(x, b) = (x, ab), (6)

where x ∈ G and a, b ∈ G. Then G(c) such that

C∗(G(c))×β G ∼= C∗(G)⊗K
(
`2(G)

)
,

where β also denotes the action induced on C∗(G(c)).

Proof:
By standard arguments C∗(G(c))×βG ∼= C∗(G(c)×βG) where G(c)×βG

is the groupoid semi-direct product (see [R, I.1.7]). Firstly we show that
G(c) ×β G ∼= G × I where I is the principal transitive groupoid arising
from the equivalence relation on G where all elements are equivalent. The
elements [(x, a), b], [(z, p), q] ∈ G(c)×βG are composable if and only if (z, p) =
(y, b−1ac(x)) where (x, y) ∈ G(2). In this case

[(x, a), b)][(y, b−1ac(x)), q] = [(x, a)(y, ac(x)), bq] = [(xy, a), bq]

and so if we define φ : G(c)×β G→ G×I by φ([(x, a), b]) = [x, (a, b−1ac(x))]
then

φ([(x, a), b)])φ
([(

y, b−1ac(x)
)
, q

])
=

[
x,

(
a, b−1ac(x)

)] [
y,

(
b−1ac(x), q−1b−1ac(x)c(y)

)]
=

[
xy,

(
a, (bq)−1ac(xy)

)]
= φ([(xy, a), bq]).

13



Thus φ (preserves composability and) is multiplicative. One checks that that
φ is a homeomorphism and that it preserves groupoid structure; hence, it is
a groupoid isomorphism.

From [MS, Proposition 6.11] we then have C∗
r (G × I) ∼= C∗

r (G) ⊗ C∗
r (I)

where ⊗ denotes the minimal or spatial tensor product. Since G is amenable
and I is an AF groupoid by [MS, Proposition 6.6] we may conclude that

C∗(G × I) ∼= C∗(G)⊗K
(
`2(G)

)
,

which completes the proof. �

3.8 Note: By [M, Theorem 3.2], the continuous 1–cocycle c : G →
G induces a coaction of G on C∗(G) and C∗(G(c)) is the resulting crossed
product. The action β may be regarded as dual to this coaction; the above
can then be interpreted as a special case of a standard duality result. Recall
that c : E1 → G induces a 1–cocycle c̃ : GE → G and by 2.4 one has
GE(c̃) ∼= GE(c). Hence, C∗(E(c)) is a crossed product of C∗(E) by a coaction
of G.

3.9 Corollary: Let E be a locally finite directed graph and c : E1 → G
be a function then

C∗(E(c))×γ G ∼= C∗(E)⊗K
(
`2(G)

)
where γ denotes the action on C∗(E(c)) induced by the natural action of G
on E(c) (see eq. (5) above). Moreover, if G is abelian then γ = α̂ where α is
given in 2.5.

Proof:
Comparing (5) and (6) one sees that β and the action induced by γ are

identical on GE(c) and thus on C∗(E(c)); the first result follows by applying

3.7. Careful examination of the isomorphism between C∗(GE) ×α Ĝ and
C∗(GE(c̃)) described in the proof of [R, Theorem II.5.7] reveals that the dual
action α̂ of G on the crossed product translates to the action β of G on
C∗(GE(c̃)) ∼= C∗(GE(c)). The second assertion then follows since we have
identified β with γ. �

The following result could perhaps be interpreted as an analogue of Green’s
Theorem [G, Theorem 14] for graphs.
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3.10 Corollary: Let E be a locally finite directed graph and λ : G →
Aut (E) a free action then

C∗(E)×λ G ∼= C∗(E/G)⊗K
(
`2(G)

)
.

Proof:
From [GT, Theorem 2.2.2], there is a function c : (E/G)1 → G such that

(E/G)(c) ∼= E. The result then follows by applying 3.9. �

4 The universal covering tree of a graph

Here the notation is adapted from [St, §2.1], [GT, §1.2.1]: let E be a directed
graph, for e ∈ E1 we formally denote the reverse edge by e where s(e) = r(e)

and r(e) = s(e). The set of reverse edges is denoted E
1
; it is then natural to

define e = e for e ∈ E
1
. A walk in E is then a sequence a = (a1, . . . , an),

which we write a = a1 · · · an, where ai ∈ E1 ∪ E1 are such that r(ai) =
s(ai+1) for i = 1, . . . , n − 1; we write s(a) = s(a1) and r(a) = r(an). It
will be convenient to regard a vertex as a trivial walk. A walk a = a1 · · · an

is said to be reduced if it does not contain the subword aiai+1 = ee for

any e ∈ E1 ∪ E
1
. The set of reduced walks in E is denoted Erw. For

a = a1 · · · an ∈ Erw the reverse walk is written a := an · · · a1; henceforth, for
a, b ∈ Erw with r(a) = s(b), ab will be understood to be the reduced walk
obtained by concatenation and cancellation (for example if a = be for some
e, b ∈ Erw then ae = b). We adopt the convention that reduced walks in E
are denoted by a, b, . . ., whereas paths in E are denoted µ, ν, . . ..

The directed graph E is said to be connected if given any two distinct
vertices in E, there is a reduced walk between them. A directed graph T
is a tree if and only if there is precisely one reduced walk between any two
vertices. We define the boundary of a tree to be the quotient of the infinite
path space by shift tail equivalence:

4.1 Definitions: Let T be a tree; then ∂T = T∞/ ∼ endowed with
the quotient topology is called the boundary of T ; denote the quotient map,
x ∈ T∞ 7→ [x] ∈ ∂T , by φ. For each v ∈ T 0 define

Y (v) = { [x] ∈ ∂T : s(x) = v } .

As there is another notion of boundary applicable to undirected graphs
it might be preferable to use the term directed boundary for the notion
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introduced here; but since we deal exclusively with directed graphs there
should be no risk of confusion. Note that if v, w ∈ T 0 are distinct vertices,
then Y (v) ∩ Y (w) is nonempty iff the unique reduced walk from v to w is
of the form µν with µ, ν ∈ T ∗ in which case Y (v) ∩ Y (w) = Y (u) where
u = r(µ) = r(ν).

4.2 Lemma: Let T be a row finite tree, then {Y (v) : v ∈ T 0} forms a basis
of compact open sets for the quotient topology on ∂T , moreover φ : T∞ → ∂T
is a local homeomorphism and ∂T is Hausdorff.

Proof:
We claim that φ(Z(µ)) = Y (r(µ)) for all µ ∈ T ∗. To see this let y ∈ Z(µ),

then y = µz for some z ∈ T∞ and so φ(y) = [y] = [z] ∈ Y (r(µ)). On the
other hand if [z] ∈ Y (r(µ)) then z ∼ µz and so [z] = [µz] ∈ φ(Z(µ)). Since
the topology of T∞ is generated by sets of the form Z(µ) for µ ∈ T ∗ it follows
that the Y (v)’s generate the quotient topology on ∂T ; hence, {Y (v) : v ∈ E0}
forms a basis.

For all µ ∈ T ∗ we claim that the restriction φ
∣∣
Z(µ) of φ to Z(µ) is injective.

To see this suppose that φ(x) = φ(y), for x, y ∈ Z(µ) then [x] = [y] that is
x = κz ∼ νz = y for some κ, ν ∈ E∗ and z ∈ T∞. Since s(κ) = s(ν) = s(µ)
the walk a = κν is a reduced loop in T , hence κ = ν and then x = y. Since
Z(µ) for µ ∈ T ∗ cover T∞ we may deduce that φ is a local homeomorphism.

Let v ∈ T 0, since T is row finite, Z(v) is compact and since φ(Z(v)) =
Y (v) we may deduce that Y (v) ⊆ ∂T is compact and ∂T is Hausdorff. �

If x ∼k y in T∞ then there is only one such k ∈ Z with this property
since T is a tree and so we may write the elements of GT as (x, y). Since
the equivalence relations: ∼ corresponding to shift tail equivalence and R(φ)
corresponding to the local homeomorphism φ : T∞ → ∂T , are identical on
T∞ we may obtain the next result from [K, §4]. We include the details since
they will be useful later.

4.3 Proposition: Let T be a row finite tree then C∗(T ) is strongly Morita
equivalent to C0(∂T ).

Proof:
As in [K, §2] we may regard Cc(T

∞) as a right Cc(∂T )–module by defining
for x ∈ T∞

(gh)(x) = g(x)h([x]),
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where g ∈ Cc(T
∞) and h ∈ Cc(∂T ). There is a Cc(∂T )–valued inner product

on Cc(T
∞) defined by

〈f, g〉C0(∂T )([x]) =
∑
y∈[x]

f(y)g(y) (7)

for f, g ∈ Cc(T
∞) and [x] ∈ ∂T . It is verified in [K, Proposition 2.2] that the

inner product has all the requisite properties. We may regard Cc(T
∞) as a

left Cc(GT )–module by defining for x ∈ T∞

(fg)(x) =
∑
y∈[x]

f(x, y)g(y),

where f ∈ Cc(GT ) and g ∈ Cc(T
∞). There is a Cc(GT )–valued inner product

on Cc(T
∞) defined for (x, y) ∈ GT by

〈f, g〉Cc(GT )(x, y) = f(x)g(y) (8)

for f, g ∈ Cc(T
∞). One may also check that this inner product has all the

necessary properties. Let X be the completion of Cc(T
∞) in the norm arising

from 〈·, ·〉C0(∂T ); it follows that X is a C∗(T )−C0(∂T ) equivalence bimodule.
�

Now we construct a “universal cover” T of a connected directed graph E (cf.
[H]):

4.4 Definition: Let E be a connected directed graph, fix a base point
? ∈ E0 and let Erw(?) denote the set of all reduced walks in E starting
at ?. Define a directed graph T = T (E, ?) as follows: let T 0 = Erw(?),
T 1 = {(a, e) ∈ Erw(?) × E1 : r(a) = s(e)} and put s(a, e) = a, r(a, e) = ae.
For (a, e) ∈ T 1 we identify (a, e) with (ae, e).

4.5 Lemma: Let E be a connected directed graph then T is a tree and
the isomorphism class of T = T (E, ?) is independent of the choice of base
point ? ∈ E0.
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Proof:
Let T = T (E, ?) and a, b ∈ T 0 with a 6= b then

c = (a1 . . . a|a|, a|a|) . . . (a1, a1)(?, b1) . . . (b1 . . . b|b|−1, b|b|) (9)

is a reduced walk in T from a to b. Suppose that d is another walk in T from
a to b. Since a, b ∈ Erw(?) in order that s(d) = a and r(d) = b the walk d
must at least contain the undirected edges in the reduced form of the right
hand side of (9), so either d = c or d is not reduced, hence T is a tree.

If we form the graph W = T (E, ?′) using a different base point ?′, then
we claim that W ∼= T . Since E is connected there is a reduced walk a ∈ Erw

from ? to ?′. Define a map f : W → T by f 0(b) = ab and f 1(b, e) = (ab, e)
where a ∈ Erw(?), b ∈ Erw(?′) and e ∈ E1 then f is a graph morphism. If
we define f−1 : T → W using the reverse walk a, then we may see that f is
an isomorphism. �

4.6 Example: Let F be the graph in 2.2 then if we choose our base point
to be the vertex v, then T = T (F, v) is isomorphic to the Cayley graph EF2

of the free group F2.

A modified version of the following definition is to be found in [St, §2.2.1]:

4.7 Definition: Let E,F be directed graphs and p : E → F be a graph
morphism then p is a covering map if

(i) p is onto, that is p0, p1 are surjective,

(ii) for u ∈ E0 the maps p1 : s−1(u) → s−1(p0(u)) and p1 : r−1(u) →
r−1(p0(u)) are bijections.

If one extends the definition of p to reverse edges in the natural way: p1(e) =
p1(e), condition (ii) may be rephrased to assert that for every u ∈ E0 and

f ∈ F 1∪F 1
with s(f) = p(u), there is a unique e ∈ E1∪E1

so that s(e) = u
and p(e) = f . It follows that if p is a covering map then it has the unique
walk lifting property (see [GT, Theorem 2.1.1]): given u ∈ E0 and a ∈ F rw

with s(a) = p(u), then there is a unique ã ∈ Erw such that s(ã) = u and
p(ã) = a. Note that for any directed graph E and function c : E1 → G the
natural projection E(c) → E is a covering map. Equivalently, if G acts freely
on E then the quotient map q : E → E/G is a covering map.
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4.8 Lemma: Let E be a connected directed graph and T as above then
p : T → E defined by p0(a) = r(a) and p1(a, e) = e for e ∈ E1 is a covering
map. Moreover, T is a universal cover of E in the sense that if q : W → E
is another covering map, then there is a graph morphism ϕ : T → W such
that p = qϕ. Moreover, ϕ is surjective if and only if W is connected.

Proof:
Fix ? ∈ E0; then T = T (E, ?). The surjectivity of p follows immediately

from the fact that E is connected (each vertex in E0 may be connected to
? via a reduced walk). Let a ∈ T 0 then s−1(a) = {(a, e) : s(e) = r(a)} and
s−1(p0(a)) = {e : s(e) = r(a)}. For (a, e) ∈ s−1(a), one has p1(a, e) = e ∈
s−1(r(a)) , so p1 : s−1(a) → s−1(r(a)) is clearly a bijection; similarly, one
checks that p1 : r−1(a) → r−1(r(a)) is a bijection (recall that (a, e) = (ae, e))
and hence p : T → E is a covering map.

Now let q : W → E be another covering map. Fix ?′ ∈ W 0 such that
q(?′) = ?. For a ∈ T 0 = Erw(?) let a′ be the unique reduced walk in W such
that s(a′) = ?′ and q(a′) = a. Define ϕ0 : T 0 → W 0 by ϕ0(a) = r(a′). Let
(a, e) ∈ T 1, then s(e) = r(a) = q0(r(a′)); hence there is a unique e′ ∈ W 1

such that s(e′) = r(a′) and q1(e′) = e and so we may define ϕ1(a, e) = e′.
Then ϕ is the desired morphism. �

4.9 Example: Now in 2.2, E is a covering graph for F and so by the
above lemma and 4.6 it has the same universal covering tree, namely EF2 .

Hence we may refer to T as the universal covering tree of E. Let G = {a ∈
Erw(?) : r(a) = ?} then G forms a countable group under concatenation. G
acts naturally on T by defining τ 0

g a = ga, and τ 1
g (a, e) = (ga, e) for g ∈ G. We

refer to G as the fundamental group of E (if E is connected the isomorphism
class of G = π1(E, ?) is independent of the choice of basepoint).

4.10 Lemma: With notation as above the map τ : G→ AutT defines a
free action of G on T such that T/G ∼= E. Moreover, G is a free group and
if E0 is finite then G ∼= Fn where n = |E1| − |E0|+ 1.

Proof:
It is routine to check that the τ i

g for i = 0, 1 and g ∈ G satisfy the requisite
properties and so τ(G) ⊆ Aut (T ). Suppose a ∈ T 0 is such that ga = a, then
as a, g ∈ Erw we must have that g = 1G = r(?) ∈ Erw, and so the action of
G on T is free.
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Let [a] ∈ (T/G)0 define ψ0 : (T/G)0 → E0 by ψ0([a]) = r(a), then ψ0

is well–defined since r(ga) = r(a). Similarly, for [(a, e)] ∈ (T/G)1 define
ψ1(T/G)1 → E1 by ψ1([a, e]) = e, then ψ1 is clearly also well–defined. Note
that ψ : T/G→ E is a surjective graph morphism (recall that p : T → E is
a covering map). Injectivity follows from the fact that if a, b ∈ Erw(?) with
r(a) = r(b) then g = ab ∈ G and a = gb; hence ψ is an isomorphism. Since
G acts freely on a tree it must be a free group, moreover if E0 is finite then
G is a free group of order |E1| − |E0| + 1 (see [Se, §3.3, Theorem 4’], [LS,
Proposition 2.2]). �

4.11 Example: Let E be the graph in 2.2 then from 4.9, T = T (E, 1)
is isomorphic to EF2 , and in this case G ∼= F3 with generators a, bc, bdb ∈
Erw(1).

4.12 Note: The action τ of G on T extends naturally to T∞ and induces
an action of G on C0(T

∞): τgh = h ◦ τg−1 . The induced action on C∗(T )
restricts to Cc(GT ) in a natural way: τg(f)(x, y) = f(τg−1x, τg−1y). Similarly
there is an action τ̃ of G on ∂T defined by τ̃g[x] = [τgx] (this action is clearly
well-defined). We also let τ̃ denote the induced action of G on C0(∂T ).

4.13 Theorem: Let E be a row finite connected directed graph, let
T = T (E, ?) be its universal covering tree, ∂T the boundary of T , and G the
fundamental group of E at ? then C∗(T )×τ G is strongly Morita equivalent
to C0(∂T )×τ̃ G.

Proof:
By 4.3 C0(∂T ) and C∗(T ) are strongly Morita equivalent, and so by

[CMW, Theorem 1] (see also [Co]) it suffices to check that the action of
G on X is compatible with the given actions on C0(∂T ) and C∗(T ); that
is, we must show that the inner products (7), (8) given in 4.3 satisfy two
equivariance conditions:

For h, k ∈ Cc(T
∞), [x] ∈ ∂T and g ∈ G we check

〈τgh, τgk〉C0(∂T )([x]) =
∑
y∈[x]

τgh(y)τgk(y)

=
∑

z∈[τg−1x]

h(z)k(z) since τg−1x ∼ τg−1y iff x ∼ y,

= 〈h, k〉C0(∂T )([τg−1x]) = τ̃〈h, k〉C0(∂T )([x]),
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and for (x, y) ∈ GT

〈τgh, τgk〉Cc(GT )(x, y) = h(τg−1x)k(τg−1y),

= 〈h, k〉Cc(GT )(τg−1x, τg−1y) = τg〈h, k〉CcGT
(x, y).

Hence we may deduce that C∗(T ) ×τ G is strongly Morita equivalent to
C0(∂T )×τ̃ G as required. �

4.14 Corollary: Let E be a row finite connected directed graph then
C∗(E) is strongly Morita equivalent to C0(∂T )×τ̃G where ∂T is the boundary
of the universal covering tree T = T (E, ?) of E and G is the fundamental
group of E at ?.

Proof:
From 4.10 we have that T/G ∼= E; applying 3.10 we may see that C∗(E)⊗

K (`2(G)) ∼= C∗(T )×τ G and the result then follows from 4.13. �

4.15 Remarks: (1) An equivalent result which does not use the universal
covering tree construction can be proved as follows: let E be a graph and Γ be
the free group with generators γe for e ∈ E1 then we may define c : E1 → Γ
by c(e) = γe (cf. [QR, §6]). The skew product graph F = E(c) is then a forest
(i.e. a disjoint union of trees). As shown in 4.3 C∗(F ) is strongly Morita
equivalent to C0(∂F ), the result then follows since the natural equivalence
bimodule is equipped with a Γ-action which is compatible with the Γ-action
on F and the induced action on ∂F .
(2) We may also use Theorem 2.8 of [MRW] to prove the above Corollary
directly — we sketch the proof that T∞ may be endowed with the structure
of an equivalence between the transformation groupoid ∂T ×G and GE (see
[MRW, Definition 2.1]). First, we require maps from T∞ to the unit spaces
of the two groupoids: for the first map take the quotient map φ : T∞ → ∂T
and for the second take σ : T∞ → E∞ to be the quotient map by the action
of G (note σ(x) = (p(x1), p(x2), . . .) where p : T → E is the covering map).
We endow T∞ with a left action by ∂T ×G so that it becomes a left principal
∂T ×G–space over E∞ (via σ) and a right action by GE so that it becomes
a right principal GE–space over ∂T (via φ). The left action

(∂T ×G) ∗ T∞ → T∞

is defined by (([x], g), x) 7→ gx where [x] = φ(x) (this is really just the action
of G on T∞) and the right action T∞ ∗ GE → T∞ is defined via the unique
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walk lifting property: if x ∈ T∞ and (αz, |α| − |β|, βz) ∈ GE with σ(x) = αz
there are unique α̃ and z̃ so that p(α̃) = α, σ(z̃) = z and x = α̃z̃; moreover,
there is a unique β̃ so that p(β̃) = β, and r(β̃) = r(α̃). The right action is
defined by (x, (αz, |α| − |β|, βz)) 7→ β̃z̃. In a natural sense this action may
be regarded as equivalent to the right action of GT on its unit space and so
the quotient by this action is then the orbit space ∂T .
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