COVERINGS OF SKEW-PRODUCTS AND CROSSED PRODUCTS
BY COACTIONS

DAVID PASK, JOHN QUIGG, AND AIDAN SIMS

ABSTRACT. Consider a projective limit G of finite groups G_n. Fix a compatible family δ^n of coactions of the G_n on a C^*-algebra A. From this data we obtain a coaction δ of G on A. We show that the coaction crossed product of A by δ is isomorphic to a direct limit of the coaction crossed products of A by the δ^n.

If $A = C^*(\Lambda)$ for some k-graph Λ, and if the coactions δ^n correspond to skew-products of Λ, then we can say more. We prove that the coaction crossed-product of $C^*(\Lambda)$ by δ may be realised as a full corner of the C^*-algebra of a $(k+1)$-graph. We then explore connections with Yeend’s topological higher-rank graphs and their C^*-algebras.

1. Introduction

In this article we investigate how certain coactions of discrete groups on k-graph C^*-algebras behave under inductive limits. This leads to interesting new connections between k-graph C^*-algebras, nonabelian duality, and Yeend’s topological higher-rank graph C^*-algebras.

We consider a particularly tractable class of coactions of finite groups on k-graph C^*-algebras. A functor c from a k-graph Λ to a discrete group G gives rise to two natural constructions. At the level of k-graphs, one may construct the skew-product k-graph $\Lambda \times_c G$; and at the level of C^*-algebras, c induces a coaction δ of G on $C^*(\Lambda)$. It is a theorem of [15] that these two constructions are compatible in the sense that the k-graph algebra $C^*(\Lambda \times_c G)$ is canonically isomorphic to the coaction crossed-product C^*-algebra $C^*(\Lambda) \times_\delta G$.

The skew-product construction is also related to discrete topology: given a regular covering map from a k-graph Γ to a connected k-graph Λ, one obtains an isomorphism of Γ with a skew-product of Λ by a discrete group G [15, Theorem 6.11]. Further results of [15] then show how to realise the C^*-algebra of Γ as a coaction crossed product of the C^*-algebra of Λ.

The results of [12] investigate the relationship between $C^*(\Lambda)$ and $C^*(\Gamma)$ from a different point of view. Specifically, they show how a covering p of a k-graph Λ by a k-graph Γ induces an inclusion of $C^*(\Lambda)$ into $C^*(\Gamma)$. A sequence of compatible coverings therefore gives rise to an inductive limit of C^*-algebras. The main results

Date: June 3, 2007.

2000 Mathematics Subject Classification. Primary: 46L05; Secondary: 46L55.

Key words and phrases. C^*-algebra, coaction, covering, crossed-product, graph algebra, k-graph.

This research was supported by the ARC.
of [12] show how to realise this inductive limit as a full corner in the C^*-algebra of a $(k+1)$-graph.

We can combine the ideas discussed in the preceding three paragraphs as follows. Fix a k-graph Λ, a projective sequence of finite groups G_n, and a sequence of functors $c_n : \Lambda \to G_n$ which are compatible with the projective structure. We obtain from this data a sequence of skew-products $\Lambda \times c_n G_n$ which form a sequence of compatible coverings of Λ. By results of [12], we therefore obtain an inductive system of k-graph C^*-algebras $C^*(\Lambda \times c_n G_n)$. The results of [15] show that each $C^*(\Lambda \times c_n G_n)$ is isomorphic to a coaction crossed product $C^*(\Lambda) \times_{\delta_n} G_n$. It is therefore natural to ask whether the direct limit C^*-algebra $\varinjlim(C^*(\Lambda \times c_n G_n))$ is isomorphic to a coaction crossed product of $C^*(\Lambda)$ by the projective limit group $\varinjlim G_n$.

After summarising in Section 2 the background needed for our results, we answer this question in the affirmative and in greater generality in Theorem 3.1. Given a C^*-algebra A, a projective limit of finite groups G_n and a compatible system of coactions of the G_n on A, we show that there is an associated coaction δ of $\varinjlim G_n$ on A, such that $A \times_{\delta} (\varinjlim G_n) \cong \varinjlim (A \times_{\delta_n} G_n)$.

In Section 4 we consider the consequences of Theorem 3.1 in the original motivating context of k-graph C^*-algebras. We consider a k-graph Λ together with functors $c_n : \Lambda \to G_n$ which are consistent with the projective limit structure on the G_n. In Theorem 4.3 we use Theorem 3.1 to deduce that $C^*(\Lambda) \times_{\delta} G$ is isomorphic to $\varinjlim(C^*(\Lambda) \times_{\delta_n} G_n)$. Using results of [12], we realise $C^*(\Lambda) \times_{\delta} G$ as a full corner in a $(k+1)$-graph algebra (Corollary 4.5). We digress in Section 5 to investigate simplicity of $C^*(\Lambda) \times_{\delta} G$ via the results of [18].

We conclude in Section 6 with an investigation of the connection between our results and Yeend’s notion of a topological k-graph [21, 20]. We construct from an infinite sequence of coverings $p_n : \Lambda_{n+1} \to \Lambda_n$ of k-graphs a projective limit Λ which is a topological k-graph. We show that the C^*-algebra $C^*(\Lambda)$ of this topological k-graph coincides with the direct limit of the $C^*(\Lambda_n)$ under the inclusions induced by the p_n. In particular, the system of cocycles $c_n : \Lambda \to G_n$ discussed in the preceding paragraph yields a cocycle $c : \Lambda \to G := \varinjlim(G_n, g_n)$, the skew-product $\Lambda \times_c G$ is a topological k-graph, and the C^*-algebras $C^*(\Lambda \times_c G)$ and $C^*(\Lambda) \times_{\delta} G$ are isomorphic, generalising the corresponding result [15, Theorem 7.1(ii)] for discrete groups.

2. Preliminaries

Throughout this paper, we regard \mathbb{N}^k as a semigroup under addition with identity element 0. We denote the canonical generators of \mathbb{N}^k by e_1, \ldots, e_k. For $n \in \mathbb{N}^k$, we denote its coordinates by $n_1, \ldots, n_k \in \mathbb{N}$ so that $n = \sum_{i=1}^k n_ie_i$. For $m, n \in \mathbb{N}^k$, we write $m \leq n$ if $m_i \leq n_i$ for all $i \in \{1, \ldots, k\}$.

We will at times need to identify \mathbb{N}^k with the subsemigroup of \mathbb{N}^{k+1} consisting of elements n whose last coordinate is equal to zero. For $n \in \mathbb{N}^k$, we write $(n, 0)$ for the corresponding element of \mathbb{N}^{k+1}. When convenient, we regard \mathbb{N}^k as (the morphisms of) a category with a single object in which the composition map is the usual addition operation in \mathbb{N}^k.
2.1. k-graphs. Higher-rank graphs are defined in terms of categories. In this paper, given a category \mathcal{C}, we will identify the objects with the identity morphisms, and think of \mathcal{C} as the collection of morphisms only. We will write composition in our categories by juxtaposition.

Fix an integer $k \geq 1$. A k-graph is a pair (Λ, d) where Λ is a countable category and $d : \Lambda \to \mathbb{N}^k$ is a functor satisfying the factorisation property: whenever $\lambda \in \Lambda$ and $m,n \in \mathbb{N}^k$ satisfy $d(\lambda) = m + n$, there are unique $\mu, \nu \in \Lambda$ with $d(\mu) = m$, $d(\nu) = n$, and $\lambda = \mu \nu$. If $p \leq q \leq d(\lambda)$, we denote by $\lambda(p,q)$ the unique path in Λ^{q-p} such that $\lambda = \lambda'(p,q)\lambda''$ for some $\lambda' \in \Lambda^p$ and $\lambda'' \in \Lambda^{d(\lambda)-q}$.

For $n \in \mathbb{N}^k$, we write Λ^n for $d^{-1}(n)$. Applying the factorisation property with $m = 0$, $n = d(\lambda)$ and with $m = d(\lambda)$, $n = 0$, one shows that Λ^0 is precisely the set of identity morphisms in Λ. The codomain and domain maps in Λ therefore determine maps $r,s : \Lambda \to \Lambda^0$. We think of Λ^0 as the vertices — and Λ as the paths — in a “k-dimensional directed graph.”

Given $F \subset \Lambda$ and $v \in \Lambda^0$ we write vF for $F \cap r^{-1}(v)$ and Fv for $F \cap s^{-1}(v)$. We say that Λ is row-finite if $v\Lambda^n$ is a finite set for all $v \in \Lambda^0$ and $n \in \mathbb{N}^k$, and we say that Λ has no sources if $v\Lambda^n$ is always nonempty.

We denote by Ω_k the k-graph $\Omega_k := \{(p,q) \in \mathbb{N}^k \times \mathbb{N}^k : p \leq q\}$ with $r(p,q) := (p,p)$, $s(p,q) := (q,q)$ and $d(p,q) := q-p$. As a notational convenience, we will henceforth denote $(p,p) \in \Omega_k^n$ by p. An infinite path in a k-graph Λ is a degree-preserving functor (otherwise known as a k-graph morphism) $x : \Omega_k \to \Lambda$. The collection of all infinite paths is denoted Λ^{∞}. We write $r(x)$ for $x(0)$, and think of this as the range of x.

For $\lambda \in \Lambda$ and $x \in s(\lambda)\Lambda^{\infty}$, there is a unique infinite path $\lambda x \in r(\lambda)\Lambda^{\infty}$ satisfying $(\lambda x)(0,p) := \lambda x(0,p - d(\lambda))$ for all $p \geq d(\lambda)$. In particular, $r(x)x = x$ for all $x \in \Lambda^{\infty}$, so we denote $\{x \in \Lambda^{\infty} : r(x) = v\}$ by $v\Lambda^{\infty}$. If Λ has no sources, then $v\Lambda^{\infty}$ is nonempty for all $v \in \Lambda^0$.

The factorisation property also guarantees that for $x \in \Lambda^{\infty}$ and $n \in \mathbb{N}^k$ there is a unique infinite path $\sigma^n(x) \in x(n)\Lambda^{\infty}$ such that $\sigma^n(x)(p,q) = x(p+n,q+n)$. We somewhat imprecisely refer to σ as the shift map. Note that $\sigma^{d(\lambda)}(\lambda x) = x$ for all $\lambda \in \Lambda$, $x \in s(\lambda)\Lambda^{\infty}$, and $x = x(0,n)\sigma^n(x)$ for all $x \in \Lambda^{\infty}$ and $n \in \mathbb{N}^k$.

We say a row-finite k-graph Λ with no sources is cofinal if, for every $v \in \Lambda^0$ and every $x \in \Lambda^{\infty}$ there exists $n \in \mathbb{N}^k$ such that $v\Lambda x(n) \neq \emptyset$. Given $m \neq n \in \mathbb{N}^k$ and $v \in \Lambda^0$, we say that Λ has local periodicity m,n at v if $\sigma^m(x) = \sigma^n(x)$ for all $x \in v\Lambda^{\infty}$. We say that Λ has no local periodicity if, for every $m,n \in \mathbb{N}^k$ and every $v \in \Lambda^0$, we have $\sigma^m(x) \neq \sigma^n(x)$ for some $x \in v\Lambda^{\infty}$.

2.2. Skew-products. Let Λ be a k-graph, and let G be a group. A cocycle $c : \Lambda \to G$ is a functor from Λ to G where the latter is regarded as a category with one object. That is, $c : \Lambda \to G$ satisfies $c(\mu \nu) = c(\mu)c(\nu)$ whenever μ, ν can be composed in Λ. It follows that $c(v) = e$ for all $v \in \Lambda^0$, where $e \in G$ is the identity element.

Given a cocycle $c : \Lambda \to G$, we can form the skew-product k-graph $\Lambda \times_c G$. We follow the conventions of [15, Section 6]. Note that these are different to those of [9]
Section 5. The paths in $\Lambda \times_c G$ are

$$(\Lambda \times_c G)^n := \Lambda^n \times G$$

for each $n \in \mathbb{N}$. The range and source maps $r, s : \Lambda \times_c G \to (\Lambda \times_c G)^0$ are given by $r(\lambda, g) := (r(\lambda), c(\lambda)g)$ and $s(\lambda, g) := (s(\lambda), g)$. Composition is determined by $(\mu, c(\nu)g)(v, g) = (\mu\nu, g)$. It is shown in [15, Section 6] that $\Lambda \times_c G$ is a k-graph.

2.3. Coverings and $(k+1)$-graphs. We recall here some definitions and results from [12] regarding coverings of k-graphs. Given k-graphs Λ and Γ, a k-graph morphism $\phi : \Lambda \to \Gamma$ is a functor which respects the degree maps. A covering of k-graphs is a triple (Λ, Γ, p) where Λ and Γ are k-graphs, and $p : \Gamma \to \Lambda$ is a k-graph morphism which is surjective and is locally bijective in the sense that for each $v \in \Gamma^0$, the restrictions $p|_{\delta v} : v\Gamma \to p(v)\Lambda$ and $p|_{\Gamma v} : \Gamma v \to \Lambda p(v)$ are bijective.

Remark 2.1. What we have called a covering of k-graphs is a special case of what was called a “covering system of k-graphs” in [12]. In general, a covering system consists of a covering of k-graphs together with some extra combinatorial data. We do not need the extra generality, so we have dropped the word “system.”

A covering (Λ, Γ, p) is row-finite if Λ (equivalently Γ) is row-finite, and $|p^{-1}(v)| < \infty$ for all $v \in \Lambda^0$. Proposition 2.6 of [12] shows that we can associate to a row-finite covering $p : \Gamma \to \Lambda$ of k-graphs a row-finite $(k+1)$-graph $\Lambda^2 \Gamma$ containing disjoint copies $i(\Lambda)$ and $j(\Gamma)$ of Λ and Γ with an edge of degree e_{k+1} connecting each vertex $j(v) \in j(\Gamma^0)$ to its image $i(p(v)) \in i(\Lambda^0)$.

More generally, given a sequence $(\Lambda_n, \Lambda_{n+1}, p_n)$ of row-finite coverings of k-graphs, Corollary 2.10 of [12] shows how to build a $(k+1)$-graph $\lim(\Lambda_n; p_n)$, which we sometimes refer to as a tower graph, containing a copy $i_n(\Lambda_n)$ of each individual k-graph in the sequence, and an edge of degree e_{k+1} connecting each $i_{n+1}(v) \in i_{n+1}(\Lambda_{n+1}^0)$ to its image $i_n(p_n(v)) \in i_n(\Lambda_n^0)$. The $(k+1)$-graph $\lim(\Lambda_n; p_n)$ has no sources if the Λ_n all have no sources.

Given a covering (Λ, Γ, p), [12, Proposition 3.2 and Theorem 3.8] show that the covering map $p : \Gamma \to \Lambda$ induces an inclusion $i_p : C^*(\Lambda) \to C^*(\Gamma)$. If $(\Lambda_n, \Lambda_{n+1}, p_n)_{n=1}^\infty$ is a sequence of coverings, the $(k+1)$-graph algebra $C^*(\lim(\Lambda_n; p_n))$ is Morita equivalent to the direct limit $\lim_i(C^*(\Lambda_n), i_p)$.

2.4. Coactions and coaction crossed products. Here we give some background on group coactions on C^*-algebras and coaction crossed products. For a detailed treatment of coactions and coaction crossed-products, see [1, Appendix A].

Given a locally compact group G, we write $C^*(G)$ for the full group C^*-algebra of G. We prefer to identify G with its canonical image in $M(C^*(G))$, but when confusion is likely we use $s \mapsto u(s)$ for the canonical inclusion of G in $M(C^*(G))$. If A and B are C^*-algebras, then $A \otimes B$ denotes the spatial tensor product. For a group G, we write δ_G for the natural comultiplication $\delta_G : C^*(G) \to M(C^*(G) \otimes C^*(G))$ given by the integrated form of the strictly continuous map which takes $s \in G$ to $s \otimes s \in UM(C^*(G) \otimes C^*(G))$.

As in [1, Definition A.21], a coaction of a group G on a C^*-algebra A is an injective homomorphism $\delta : A \to M(A \otimes C^*(G))$ satisfying
(1) the coaction identity $(\delta \otimes 1_G) \circ \delta = (1_A \otimes \delta_G) \circ \delta$ (as maps from A to $M(A \otimes C^*(G) \otimes C^*(G))$); and

(2) the nondegeneracy condition $\delta(A)(1_A \otimes C^*(G)) = M(A \otimes C^*(G))$.

As in [7,8], the nondegeneracy condition (2) — rather than the weaker condition that δ be a nondegenerate homomorphism — is part of our definition of a coaction (cf. Definition A.21 and Remark A.22(3) of [4]). Since we will be dealing only with coactions of compact (and hence amenable) groups, the two conditions are equivalent in our setting in any case (see [14, Lemma 3.8]).

Let $\delta : A \to M(A \otimes C^*(G))$ be a coaction of G on A. We regard the map which takes $s \in G$ to $u(s) \in M(C^*(C))$ as an element w_G of $UM(C_0(G) \otimes C^*(G))$. Given a C^*-algebra D, a covariant homomorphism of (A, G, δ) into $M(D)$ is a pair (π, μ) of homomorphisms $\pi : A \to M(D)$ and $\mu : C_0(G) \to M(D)$ satisfying the covariance condition:

$$(\pi \otimes \text{id}_D) \circ \delta(a) = (\mu \otimes \text{id}_G)(w_G)(\pi(a) \otimes 1)(\mu \otimes \text{id}_G)(w_G)^*$$

for all $a \in A$.

The coaction crossed-product $A \rtimes_\delta G$ is the universal C^*-algebra generated by the image of a universal covariant representation (j_A, j_G) of (A, G, δ) (see [4, Theorem A.41]).

3. Continuity of coaction crossed-products

In this section, we prove a general result regarding the continuity of the coaction crossed-product construction. Specifically, consider a projective system of finite groups G_n and a system of compatible coactions δ^n of the G_n on a fixed C^*-algebra A. We show that this determines a coaction δ of the projective limit $\varprojlim G_n$ on A, and that the coaction crossed product of A by δ is isomorphic to a direct limit of the coaction crossed products of A by the δ^n.

The application we have in mind is when $A = C^*(\Lambda)$ is a k-graph algebra, and the δ^n arise from a system of skew-products of Λ by the G_n. We consider this situation in Section 4.

Theorem 3.1. Let A be a C^*-algebra, and let

$$\cdots \xrightarrow{q_{n+1}} G_{n+1} \xrightarrow{q_n} G_n \xrightarrow{q_1} G_1$$

be surjective homomorphisms of finite groups. For each n let δ^n be a coaction of G_n on A. Suppose that the diagram

$$(1) \quad \xymatrix{ A \ar[r]^{\delta^{n+1}} \ar[rd]_{\delta^n} & M(A \otimes C^*(G_{n+1})) \ar[d]^{\text{id} \otimes q_n} \cr & M(A \otimes C^*(G_n)) }$$

commutes for each n.

For each n, write Q_n for the canonical surjective homomorphism of $\varprojlim(G_m, q_m)$ onto G_n; write $q_n^* : C(G_n) \to C(G_{n+1})$ for the induced map $q_n^*(f) := f \circ q_n$; and write J_n for the homomorphism $J_n := j^A_{\delta^{n+1}} \times (j_{G_{n+1}} \circ q_n^*)$ from $A \times_{\delta^n} G_n$ to $A \times_{\delta^{n+1}} G_{n+1}$.

Then there is a unique coaction δ of $\varprojlim (G_n, q_n)$ on A such that:

(i) the diagrams

$$
\begin{array}{ccc}
A & \xrightarrow{\delta} & M(A \otimes C^*(\varprojlim G_n)) \\
\downarrow{\delta^n} & & \downarrow{id \otimes Q_n} \\
M(A \otimes C^*(G_n)) & \end{array}
$$

commute; and

(ii) $A \times_\delta \varprojlim (G_n, q_n) \cong \varprojlim (A \times_{\delta^n} G_n, J_n)$.

Remark 3.2. In equation (1) we could replace $M(A \otimes C^*(G_n))$ with $A \otimes C^*(G_n)$ and $M(A \otimes C^*(G_{n+1}))$ with $A \otimes C^*(G_{n+1})$ because G_n, G_{n+1} are discrete.

Proof of Theorem 3.1. Put

$$
\begin{align*}
G &= \varprojlim G_n \\
B_n &= A \times_{\delta^n} G_n \\
J_n &= j_{\delta^{n+1}} \times (j_{G_{n+1}} \circ q_n^*) : B_n \to B_{n+1} \\
B &= \varinjlim (B_n, J_n) \\
K_n &= \text{the canonical embedding } B_n \to B.
\end{align*}
$$

We aim to apply Landstad duality [17]: we will show that B is of the form $C \times_\delta G$ for some coaction (C, G, δ), and then we will show that we can take $C = A$. To apply [17] we need:

- an action α of G on B, and
- a nondegenerate homomorphism $\mu : C(G) \to M(B)$ which is $rt - \alpha$ equivariant, where rt is the action of G on $C(G)$ by right translation.

Then [17] will provide a coaction (C, G, δ) and an isomorphism

$$
\theta : B \xrightarrow{\cong} C \times_\delta G
$$

such that

$$
\theta \circ \mu = j_G \quad \text{and} \quad \theta(B^\alpha) = j_C(C).
$$

This is simpler than the general construction of [17], because our group G is compact (and then we are really using Landstad’s unpublished characterisation [13] of crossed products by coactions of compact groups).

We begin by constructing the action α: for each $s \in G$ the diagrams

$$
\begin{array}{ccc}
B_{n+1} & \xrightarrow{\delta^n Q_{n+1}(s)} & B_{n+1} \\
J_n \downarrow{} & & \downarrow{J_n} \\
B_n & \xrightarrow{\delta^n Q_n(s)} & B_n
\end{array}
$$
commute because
\[
\tilde{\delta}^{n+1} Q_{n+1(s)} \circ J_n \circ j_A^n = \tilde{\delta}^{n+1} Q_{n+1(s)} \circ j_A^{n+1} \\
= j_A^{n+1} \\
= J_n \circ j_A^n \\
= J_n \circ \tilde{\delta}^n Q_n(s) \circ j_A^n
\]
and
\[
\tilde{\delta}^{n+1} Q_{n+1(s)} \circ J_n \circ j_G^n = \tilde{\delta}^{n+1} Q_{n+1(s)} \circ j_G^{n+1} \circ q_s^n \\
= j_G^{n+1} \circ rt Q_{n+1(s)} \circ q_s^n \\
= j_G^{n+1} \circ q_s^n \circ rt q_n Q_{n+1(s)} \\
= J_n \circ j_G^n \circ rt Q_n(s) \\
= J_n \circ \tilde{\delta}^n Q_n(s) \circ j_G^n.
\]
Thus, because the \(\tilde{\delta}_n Q_n(s)\) are automorphisms, by universality there is a unique automorphism \(\alpha_s\) such that the diagrams
\[
\begin{array}{ccc}
B & \overset{\alpha_s}{\rightarrow} & B \\
\downarrow K_n & & \downarrow K_n \\
B_n & \overset{\tilde{\delta}_n Q_n(s)}{\rightarrow} & B_n
\end{array}
\]
commute. It is easy to check that this gives a homomorphism \(\alpha : G \rightarrow \text{Aut } B\). We verify continuity: each function \(s \mapsto \alpha_s(b)\) for \(b \in B\) is a uniform limit of functions of the form \(s \mapsto \alpha_s \circ K_n(b)\) for \(b \in B_n\). But we have
\[
\alpha_s \circ K_n(b) = K_n \circ \tilde{\delta}_n Q_n(s)(b),
\]
which is continuous since \(K_n\), \(Q_n\), and \(t \mapsto \tilde{\delta}_n(t) : G_n \rightarrow B_n\) are.

We turn to the construction of the nondegenerate homomorphism \(\mu\): first note that the increasing union \(\bigcup Q_n^\ast(C(G_n))\) is dense in \(C(G)\) by the Stone-Weierstrass Theorem, and it follows that there is an isomorphism
\[
C(G) \cong \lim_{\rightarrow} (C(G_n), q_n^\ast)
\]
taking \(Q_n\) to the canonical embedding. We have a compatible sequence of nondegenerate homomorphisms
\[
\begin{array}{ccc}
C(G_{n+1}) & \overset{j_G^{n+1}}{\rightarrow} & M(B_{n+1}) \\
\downarrow q_n^\ast & & \downarrow J_n \\
C(G_n) & \overset{j_G^n}{\rightarrow} & M(B_n)
\end{array}
\]
so by universality there is a unique homomorphism μ making the diagrams

$$
\begin{align*}
C(G) & \xrightarrow{\mu} M(B) \\
Q_n^* & \uparrow K_n \\
C(G_n) & \xrightarrow{j_G} M(B_n)
\end{align*}
$$

commute. Moreover, μ is nondegenerate since K_n and j_{G_n} are.

We now have α and μ, and the equivariance

$$
\alpha_s \circ \mu = \mu \circ \text{rt}_s
$$

follows from

$$
\alpha_s \circ \mu \circ Q_n^* = \alpha_s \circ K_n \circ j_{G_n} = K_n \circ \hat{\delta_n} \circ j_{G_n} = K_n \circ j_{G_n} \circ \text{rt}_{Q_n(s)} = \mu \circ Q_n^* \circ \text{rt}_{Q_n(s)} = \mu \circ \text{rt}_s \circ Q_n^*.
$$

Thus we can apply [17] to obtain a coaction (C, G, δ) and an isomorphism

$$
\theta : B \xrightarrow{\cong} C \times_{\delta} G
$$

such that

$$
\theta \circ \mu = j_G \quad \text{and} \quad \theta(B^\alpha) = j_C(C).
$$

We want to take $C = A$. Note that we have a compatible sequence of nondegenerate homomorphisms

$$
\begin{align*}
A & \xrightarrow{j_A^{n+1}} B_{n+1} \\
j_A^n & \downarrow J_n \\
A & \xrightarrow{j_A^n} B_n
\end{align*}
$$

so by universality there is a unique homomorphism j making the diagrams

$$
\begin{align*}
A & \xrightarrow{j} B \\
j_A^n & \downarrow K_n \\
A & \xrightarrow{j_A^n} B_n
\end{align*}
$$

commute. Moreover, j is injective and nondegenerate since K_n and j_A^n are. Because $j, j_C, \text{and} \theta$ are faithful, to show that we can take $C = A$ it suffices to show that

$$
j(A) = B^\alpha.
$$

We have

$$
j(A) \subset B^\alpha.
$$
because

\[\alpha_s \circ j = \alpha_s \circ K_n \circ j_A^\delta n \]
\[= K_n \circ \hat{\delta}^n Q_n(s) \circ j_A^\delta n \]
\[= K_n \circ j_A^\delta n \]
\[= j. \]

For the opposite containment, let \(b \in B^n \). There is a sequence \(b_n \in B_n \) such that \(K_n(b_n) \to b \). The functions \(s \mapsto \alpha_s \circ K_n(b) \) converge uniformly to the function \(s \mapsto \alpha_s(b) \), so

\[\int_G \alpha_s \circ K_n(b_n) \, ds \to \int_G \alpha_s(b) \, ds = b. \]

We have

\[\int_G \alpha_s \circ K_n(b_n) \, ds = \int_G K_n \circ \hat{\delta}^n Q_n(s)(b_n) \, ds = K_n \left(\int_G \hat{\delta}^n Q_n(s)(b_n) \, ds \right). \]

Since

\[\int_G \hat{\delta}^n Q_n(s)(b_n) \, ds \in B_n^{\hat{\delta} n} = j_A^\delta n(A), \]

we conclude that

\[b \in K_n \circ j_A^\delta n(A) = j(A). \]

Therefore we can take \(C = A \), so that we have a coaction \((A, G, \delta) \) and an isomorphism

\[\theta : B \xrightarrow{\cong} A \times_\delta G \]

such that

\[\theta \circ \mu = j_G. \]

We have proved (ii). For (i), we calculate:

\[(j_A^\delta \otimes \delta) \circ (\text{id} \otimes q_n) \circ \delta = (\text{id} \otimes q_n) \circ (j_A^\delta \otimes \text{id}) \circ \delta \]
\[= (\text{id} \otimes q_n) \circ \text{Ad}(j_G \otimes \text{id})(w_G) \circ (j_A^\delta \otimes 1) \]
\[= \text{Ad}(\text{id} \otimes q_n)((j_G \otimes \text{id})(w_G)) \circ (\text{id} \otimes q_n) \circ (j_A^\delta \otimes 1) \]
\[= \text{Ad}(j_G \otimes \text{id})((\text{id} \otimes q_n)(w_G)) \circ (j_A^\delta \otimes 1) \]
\[= \text{Ad}(j_G \otimes Q_n^* \otimes \text{id})(w_{G_n}) \circ (j_A^\delta \otimes 1) \]
\[= \text{Ad}(K_n \circ j_G \otimes \text{id})(w_{G_n}) \circ (K_n \circ j_A^\delta \otimes 1) \]
\[= (K_n \otimes \text{id}) \circ \text{Ad}(j_G \otimes \text{id})(w_{G_n}) \circ (j_A^\delta \otimes 1) \]
\[= (K_n \otimes \text{id}) \circ (j_A^\delta_n \otimes \text{id}) \circ \delta^n \]
\[= (K_n \circ j_A^\delta_n \otimes \text{id}) \circ \delta^n \]
\[= (j_A^\delta \otimes \text{id}) \circ \delta^n. \]

Since \(j_A^\delta \) is faithful, we therefore have \(\delta \circ (\text{id} \otimes q_n) = \delta^n \). \(\square \)
The following application of Theorem 3.1 motivates the work of the following sections.

Example 3.3. Let $A = C(\mathbb{T}) = C^*(\mathbb{Z})$, and let z denote the canonical generating unitary function $z \mapsto z$. For $n \in \mathbb{N}$, let $G_n := \mathbb{Z}/2^{n-1}\mathbb{Z}$ be the cyclic group of order 2^{n-1}. We write 1 for the canonical generator of G_n and 0 for the identity element. Let $g \mapsto u_n(g)$ denote the canonical embedding of G_n into $C^*(G_n)$. Define $q_n : G_{n+1} \to G_n$ by $q_n(m) := m \text{ (mod } 2^{n-1})$, and write q_n also for the homomorphism $q_n : C^*(G_{n+1}) \to C^*(G_n)$ satisfying $q_n(u_{n+1}(g)) = u_n(q_n(g))$. For each n, let δ^n be the coaction of G_n on A determined by $\delta^n(z) := z \otimes u_n(1)$.

Let $g \mapsto u(g)$ denote the canonical embedding of $\lim G_n$ as unitaries in the multiplier algebra of $C^*(\lim G_n)$. The coaction δ of $\lim G_n$ on A described in Theorem 3.1 is the one determined by $\delta(z) := z \otimes u(1, 1, \ldots)$; the corresponding coaction crossed-product is known to be isomorphic to the Bunce-Deddens algebra of type 2^∞ (see, for example, [6, 8.4.4]).

4. Coverings of skew-products

In this section and the next, we adopt the following notation and assumptions.

Notation 4.1. Let Λ be a connected row-finite k-graph with no sources. Fix a vertex $v \in A^0$, and denote by $\pi \Lambda$ the fundamental group $\pi_1(\Lambda, v)$ of Λ with respect to v. Fix a cocycle $c : \Lambda \to \pi \Lambda$ such that the skew product $\Lambda \rtimes_c \pi \Lambda$ is isomorphic to the universal covering $\Omega\Lambda$ of Λ (such a cocycle exists by [15, Corollary 6.5]).

Fix a descending chain of finite-index normal subgroups

\[\cdots < H_{n+1} < H_n < \cdots < H_1 := \pi \Lambda. \]

For each n, let $G_n := \pi \Lambda/H_n$, and let $q_n : G_{n+1} \to G_n$ be the induced homomorphism

\[q_n(g_{n+1}) := gH_n. \]

Then

\[\cdots \xrightarrow{q_n^{-1}} G_{n+1} \xrightarrow{q_n} G_n \xrightarrow{q_{n-1}} \cdots \xrightarrow{q_1} G_1 := \{e\} \]

is a chain of surjective homomorphisms of finite groups. Let G denote the projective limit group $\lim (G_n, q_n)$.

For each n, let $c_n : \Lambda \to G_n$ be the induced cocycle $c_n(\lambda) = c(\lambda)H_n$, and let

\[\Lambda_n := \Lambda \rtimes c_n G_n \]

be the skew-product k-graph. Define covering maps $p_n : \Lambda_{n+1} \to \Lambda_n$ by $p_n(\lambda, g) := (\lambda, q_n(g))$.

As in [15, Theorem 7.1(1)], for each n there is a coaction $\delta^n : C^*(\Lambda) \to C^*(\Lambda) \otimes C^*(G_n)$ determined by $\delta^n(s_\lambda) := s_\lambda \otimes c_n(\lambda)$. Denote by J_n the inclusion

\[J_n := j_{\Lambda_{n+1}}^\delta \times (j_{G_{n+1}} \circ q_n^*) : C^*(\Lambda) \times \delta^n G_n \to C^*(\Lambda) \times \delta^n G_{n+1} \]

described in Theorem 3.1(ii).

As in [15, Theorem 7.1(ii)], for each n there is an isomorphism ϕ_n of $C^*(\Lambda_n) = C^*(\Lambda \rtimes c_n G_n)$ onto $C^*(\Lambda) \times \delta^n (G_n)$ which satisfies $\phi_n(s(\lambda, g)) := (s_\lambda, g)$.

Example 4.2 (Example 3.3 Continued). Let \(\Lambda \) be the path category of the directed graph \(B_1 \) consisting of a single vertex \(v \) and a single edge \(f \) with \(r(f) = s(f) = v \). Note that as a category, \(\Lambda \) is isomorphic to \(\mathbb{N} \), and the degree functor is then the identity function from \(\mathbb{N} \) to itself.

Then \(\pi \Lambda \) is the free abelian group generated by the homotopy class of \(f \), and so is isomorphic to \(\mathbb{Z} \). We define a functor \(c : \Lambda \to \mathbb{Z} \) by \(c(f) = 1 \).

For each \(n \in \mathbb{N} \), let \(H_n := 2^{n-1}\mathbb{Z} \subset \mathbb{Z} \), so that \(\cdots \subset H_{n+1} \subset H_n \subset \cdots \subset H_1 := \pi \Lambda \) is a descending chain of finite-index normal subgroups. For each \(n \), \(G_n := \mathbb{Z}/H_n \) is the cyclic group of order \(2^n - 1 \), and \(q_n : G_{n+1} \to G_n \) is the quotient map described in Example 3.3. The induced cocycle \(c_n : \Lambda \to G_n \) obtained from \(c \) is determined by \(c_n(f) = 1 \in \mathbb{Z}/2^{n-1}\mathbb{Z} \).

For \(p \in \mathbb{N} \), let \(C_p \) denote the simple cycle graph with \(p \) vertices: \(C_p^0 := \{ v^p_j : j \in \mathbb{Z}/p\mathbb{Z} \} \) and \(C_p^1 := \{ \varepsilon^p_j : j \in \mathbb{Z}/p\mathbb{Z} \} \), where \(r(\varepsilon^p_i) = v^p_i \) and \(s(\varepsilon^p_i) = v^p_{i+1 \mod p} \). For each \(n \), the skew-product graph \(\Lambda_n := \Lambda \times_{c_n} G_n \) is isomorphic to the path-category of \(C_{2^{n-1}} \). The associated covering map \(p_n : \Lambda_{n+1} \to \Lambda_n \) corresponds to the double-covering of \(C_{2^n} \) by \(C_{2^n} \) satisfying \(v^p_{1 \mod 2^n} \mapsto v^p_{1 \mod 2^{n-1}} \) and \(\varepsilon^p_i \mapsto \varepsilon^p_{i \mod 2^{n-1}} \).

Modulo a relabelling of the generators of \(\mathbb{N}^2 \), the 2-graph \(\lim(G_n, p_n) \) obtained from this data as in [12] (see Section 2.3) is isomorphic to the 2-graph of [16] Example 6.7. Combining this with the final observation of Example 3.3 we obtain a new proof that the \(C^* \)-algebra of this 2-graph is Morita equivalent to the Bunce-Deddens algebra of type \(2^\infty \).

Theorem 4.3. Adopt the notation and assumptions [11]. Taking \(A := C^*(\Lambda) \), the coactions \(\delta^n \) and the quotient maps \(q_n \) make the diagrams (11) commute. Let \(\delta \) denote the coaction of \(G := \lim(G_n, q_n) \) on \(C^*(\Lambda) \) obtained from Theorem 3.3. Let \(P_0 \) denote the projection \(\sum_{v \in A_0} s_v \) in the multiplier algebra of \(C^*(\lim(\Lambda_n, p_n)) \). Then \(P_0 \) is full and

\[
P_0 C^*(\lim(\Lambda_n, p_n)) P_0 \cong C^*(\Lambda) \times \delta G.
\]

To prove this theorem, we first show that in the setting described above, the inclusions of \(k \)-graph algebras induced from the coverings \(p_n : \Lambda_{n+1} \to \Lambda_n \) as in [12] are compatible with the inclusions of coaction crossed products induced from the quotient maps \(q_n : G_{n+1} \to G_n \).

Lemma 4.4. With the notation and assumptions [11] fix \(n \in \mathbb{N} \), and let \(\iota_{p_n} \) be the inclusion of \(C^*(\Lambda_n) \) into \(C^*(\Lambda_{n+1}) \) obtained from [12] Proposition 3.3(iv)]. Then the inclusion \(\iota_n \) and the isomorphisms \(\phi_n, \phi_{n+1} \) of Notation 4.1 make the following diagram commute.

\[
\begin{array}{ccc}
C^*(\Lambda_n) & \xrightarrow{\iota_{p_n}} & C^*(\Lambda_{n+1}) \\
\downarrow \phi_n & & \downarrow \phi_{n+1} \\
C^*(\Lambda) \times \delta^n G_n & \xrightarrow{\iota_n} & C^*(\Lambda) \times \delta^{n+1} G_{n+1}
\end{array}
\]

Proof. By definition, we have

\[
\iota_{p_n}(s_{(\lambda, gH_n)}) = \sum_{p(\lambda', g'H_{n+1}) = (\lambda, gH_n)} s_{(\lambda', g'H_{n+1})}.
\]
By definition of \(p_n \), this becomes
\[
\ell_p(s_{(\lambda,gH_n)}) = \sum_{\{g'H_{n+1} \in G_{n+1} : g'H_n = gH_n\}} s_{(\lambda,g'H_{n+1})}.
\]
Hence
\[
\varphi_{n+1} \circ \ell_{P_n}(s_{(\lambda,gH_n)}) = \sum_{\{g'H_{n+1} \in G_{n+1} : g'H_n = gH_n\}} (s_{\lambda,g'H_{n+1}}).
\]
But this is precisely \(\ell(\varphi_n(s_{(\lambda,gH_n)})) \) by definition of \(\ell \) and \(\varphi_n \).

Corollary 4.5. With the notation and assumptions \([4.1]\), let \(P_0 \) denote the projection \(\sum_{\nu \in \Lambda_0} s_{\nu} \) in the multiplier algebra of \(C^*(\lim(\Lambda_n,p_n)) \). Then \(P_0 \) is full, and
\[
P_0 C^*(\lim(\Lambda_n,p_n)) P_0 \cong \lim(C^*(\Lambda) \times_{g_n} G_n, t_n).
\]

Proof. Equation (3.2) of \([12]\) implies that \(P_0 C^*(\lim(\Lambda_n,p_n)) P_0 \) is isomorphic to \(\lim(C^*(\Lambda_n), t_{p_n}) \). The latter is isomorphic to \(\lim(\tilde{C}^*(\Lambda) \times_{g_n} G_n, t_n) \) by Lemma 4.4 and the universal property of the direct limit.

Proof of Theorem 4.3 It is immediate from the definitions of the maps involved that the maps \(\delta_n \) and \(q_n \) make the diagram (1) commute. The rest of the statement then follows from Corollary 4.5 and Theorem 3.1(ii).

5. Simplicity

In this section we frequently embed \(\mathbb{N}^k \) into \(\mathbb{N}^{k+1} \) as the subset consisting of elements whose \((k+1)\)st coordinate is equal to zero. For \(n \in \mathbb{N}^k \), we write \((n,0)\) for the corresponding element of \(\mathbb{N}^{k+1} \).

Theorem 5.1. Adopt the notation and assumptions \([4.1]\). Then \(C^*(\lim(\Lambda_n,p_n)) \) is simple if and only if the following two conditions are satisfied:

(i) each \(\Lambda_n \) is cofinal, and

(ii) whenever \(v \in \Lambda_0 \), \(p \neq q \in \mathbb{N}^k \) satisfy \(\sigma^p(x) = \sigma^q(x) \) for all \(x \in v\Lambda_0 \), there exists \(x \in v\Lambda^\infty \), \(l \in \mathbb{N}^k \) and \(N \in \mathbb{N} \) such that \(c_N(x(p,p+l)) \neq c_N(x(q,q+l)) \).

The idea is to prove the theorem by appealing to \([18\text{, Theorem 3.1}]\). To do this, we will first describe the infinite paths in \(\lim(\Lambda_n,p_n) \). We identify \(\lim(G_n,q_n) \) with the set of sequences \(g = (g_n)_{n=1}^\infty \) such that \(g_n(g_{n+1}) = g_n \) for all \(n \).

Lemma 5.2. Adopt the notation and assumptions \([4.1]\). Fix \(x \in \Lambda^\infty \) and \(g = (g_n)_{n=1}^\infty \in \lim(G_n,q_n) \). For each \(n \in \mathbb{N} \) there is a unique infinite path \((x,g_n) \in \Lambda_n^\infty \) determined by \((x,g_n)(0,m) = (x(0,m),c_n(x(0,m))^{-1}g_n)\) for all \(m \in \mathbb{N}^k \). There is a unique infinite path \(x^g \in (\lim(\Lambda_n,p_n)) \) such that \(x^g(x^0,m,0) = x^0(m,0) \) for all \(m \in \mathbb{N}^k \) and \(x^g(nc_{k+1}) = (x(0),g_n) \) for all \(n \in \mathbb{N} \); moreover \(\sigma^{nc_{k+1}}(x^g)(0,m,0) = (x,g_n)(0,m) \) for all \(m \in \mathbb{N}^k \). Finally, every infinite path \(y \in (\lim(\Lambda_n,p_n))_0 \) is of the form \(\sigma^{nc_{k+1}}(x^g) \) for some \(n \in \mathbb{N} \), \(x \in \Lambda^\infty \) and \(g \in \lim(G_n,q_n) \).

Proof. That the formula given determines unique infinite paths \((x,g_n), n \in \mathbb{N} \) follows from \([9\text{, Remarks 2.2}]\). That there is a unique infinite path \(x^g \) such that
\(x^g(0, (m, 0)) = x(0, m)\) for all \(m \in \mathbb{N}^k\) and \(x^g(ne_{k+1}) = (x(0), g_n)\) for all \(n \in \mathbb{N}\) follows from the observation that for each \(n \in \mathbb{N}\) there is a unique path
\[
\alpha = \alpha_{g,n} := e(x(0), g_1)e(x(0), g_2) \ldots e(x(0), g_n)
\]
with \(d(\alpha_{g,n}) = ne_{k+1}, r(\alpha) = x(0) \in \Lambda^0\) and \(s(\alpha) = (x(0), g_n) \in \Lambda^0_n\), and that for each \(m \in \mathbb{N}^k\),
\[
\alpha(x, g_n)(0, m) = x(0, m)e(x(m), c_1(x(0, m))^{-1}g_1) \ldots e(x(m), c_n(x(0, m))^{-1}g_n)
\]
is the unique minimal common extension of \(x(0, m)\) and \(\alpha\). This also establishes the assertion that \(\sigma^{ne_{k+1}}(x^g)(0, (m, 0)) = (x, g_n)(0, m)\) for all \(m \in \mathbb{N}^k\).

For the final assertion, fix \(y \in (\lim(\Lambda_n, p_n))^\infty\). We must have \(y(0) = (v, g_n)\) for some \(v \in \Lambda^0, g_n \in G_n = \pi\Lambda/H_n\) and \(n \in \mathbb{N}\). Let \(x \in \Lambda_n^\infty\) be the infinite path determined by \(x(0, m) := y(0, (m, 0))\) for all \(m \in \mathbb{N}^k\). By definition of \(\Lambda_n = \Lambda \times_{c_\rho} G_n\), we have \(x(0, m) := (\alpha_m, c_n(\alpha_m)^{-1}g_n)\) where each \(\alpha_m \in \nu\Lambda^m\) and \(g\) is the element of \(\pi\Lambda\) such that \(y(0) = v(g_n)\) as above. There is then an infinite path in \(x' \in \Lambda^\infty\) determined by \(x'(0, m) = \alpha_m\) for all \(m \in \mathbb{N}^k\). For \(n > i \geq 1\), inductively define \(g_i := g_i(g_{i+1})\), and for \(n < i\) let \(g_i\) be the unique element of \(G_i\) such that \(y((i-n)e_{k+1}) = (v, g_i)\); that such \(g_i\) exist follows from the definition of \(\lim(\Lambda_n, p_n)\).

Then \(g := (g_i)_{i \in H_\infty}^\infty\) is an element of \(\lim(G_n, q_n)\) by definition, and routine calculations using the definitions of the \(\Lambda_n\) show that \(x = \sigma^{ne_{k+1}}(x')^g\). \(\square\)

Lemma 5.3. Adopt the notation and assumptions \([4.1]\). Then the \((k + 1)\)-graph \(\lim(\Lambda_n, p_n)\) is cofinal if and only if each \(\Lambda_n\) is cofinal.

Proof. First suppose that each \(\Lambda_n\) is cofinal. Fix \(y \in \lim(\Lambda_n, p_n)\) and \(w \in \lim(\Lambda^0)\).

By Lemma 5.2 we have \(y = \sigma^{i_0e_{k+1}}(x^g)\) for some \(g = (g_n)_{n=1}^\infty \in \lim(G_n, q_n)\), some \(i_0 \in \mathbb{N}\) and some \(x \in \Lambda^\infty\). We must show that \(w(\lim(\Lambda_n, p_n))y(q) \neq \emptyset\) for some \(q\).

We have \(w \in \Lambda^0_m\) for some \(m \in \mathbb{N}\), so \(w = (w', h)\) for some \(h \in G_m\). If \(m < i_0\), fix any \(h' \in \pi\Lambda\) such that \(h'H_{i_0} = h\), and note that \(w(\lim(\Lambda_n, p_n))(w', h'H_{i_0})\) is nonempty, so that it suffices to show that \((w', h'H_{i_0})\lim(\Lambda_n, p_n))y(q) \neq \emptyset\) for some \(q\). That is to say, we may assume without loss of generality that \(m \geq i_0\). But now \(w \in \Lambda^0_m\) and \(\sigma^{0, \ldots, 0, m-i_0}(y) \in (\lim(\Lambda_n, p_n))^\infty\) with \(r(y) = \Lambda^0_{i_0}\). Since \(\Lambda_n\) is cofinal, we have \(w(\Lambda_{i_0})x(g_m)(q) \neq \emptyset\) for some \(q \in \mathbb{N}^k\) (recall that \(x, (g_i)_{i \in H_\infty}^\infty\) are such that \(y = \sigma^{i_0e_{k+1}}(x^g)\)). By definition, \((x, g_m)(q) = y(q_1, \ldots, q_k, m-i_0)\) and this shows that \(w(\lim(\Lambda_n, p_n))y(q) \neq \emptyset\) for \(q = (q_1, \ldots, q_k, m-n)\).

Now suppose that \(\lim(\Lambda_n, p_n)\) is cofinal. Fix \(n \in \mathbb{N}\) and a vertex \(w\) and an infinite path \(x\) in \(\Lambda_n\). Then \(x(0) = (v, gH_n)\) for some \(v \in \Lambda^0, g \in \pi\Lambda\). There are paths \(\alpha_m \in \Lambda^m, m \in \mathbb{N}^k\) determined by \(x(0, m) = (\alpha_m, c_n(\alpha_m)^{-1}gH_n)\); there is then an infinite path \(x' \in \Lambda^\infty\) such that \(x'(0, m) = \alpha_m\) for all \(m \in \mathbb{N}^k\). Let \(g_i := gH_i\) for all \(i \in \mathbb{N}\). By abuse of notation we denote by \(g\) the element \((gH_i)_{i=1}^\infty\) of \(\lim(G_n, q_n)\). Let \(y = \sigma^n(x')^g\) be the infinite path of \(\lim(\Lambda_n, p_n)\) provided by Lemma 5.2. As \(\lim(\Lambda_n, p_n)\) is cofinal, we may fix a path \(\lambda \in \lim(\Lambda_n, p_n)\) such that \(r(\lambda) = w\) and \(s(\lambda)\) lies on \(y\). By definition of \(y\), there exist \(n' \geq n\) and \(m \in \mathbb{N}^k\) such that \(s(\lambda) = (x'(m), c_{n'}(\alpha_m)^{-1}g_{n'})\). We then have \(d(\lambda)_{k+1} = n' - n,\) and we may factorise \(\lambda = \lambda'\lambda''\) where \(d(\lambda') = d(\lambda) - (n' - n)e_{k+1}\) and \(d(\lambda'') = (n' - n)e_{k+1}\). By construction
Lemma 5.4. Adopt the notation and assumptions 4.1. Then the \((k + 1)\)-graph

\(\lim (\Lambda_n, p_n)\) has no local periodicity if and only if it satisfies condition 2 of Theorem 5.1.

Proof. First suppose that condition 2 of Theorem 5.1 holds. Fix a vertex \(v \in (\lim (\Lambda_n, p_n))^0\) and \(p \neq q \in \mathbb{N}^{k+1}\). So \(v \in \Lambda_n^0\) for some \(n\), and \(v\) therefore has the form \(v = (w, gH_n)\) for some \(w \in \Lambda_0^0\) and \(g \in \pi \Lambda\). We must show that there exists \(x \in \nu(\lim (\Lambda_n, p_n))^\infty\) such that \(\sigma^p(x) \neq \sigma^q(x)\).

We first consider the case where \(p_{k+1} \neq q_{k+1}\). By construction of the tower graph \(\lim (\Lambda_n, p_n)\), this forces the vertices \(x(p)\) and \(x(q)\) to lie in distinct \(\Lambda_n\) for any \(x \in \nu(\lim (\Lambda_n, p_n))^\infty\); in particular they cannot be equal.

Now suppose that \(p_{k+1} = q_{k+1}\). If \(\sigma^p(x) = \sigma^q(x)\) for every \(x \in \nu(\lim (\Lambda_n, p_n))^\infty\), then for any \(\alpha \in \nu(\lim (\Lambda_n, p_n))p^\infty_{k+1}\) and any \(y \in s(\alpha)(\lim (\Lambda_n, p_n))^\infty\), we have \(\sigma^p(\alpha y) = \sigma^q(\alpha y)\); that is,

\[
\sigma^{p-p_{k+1}e_{k+1}}(y) = \sigma^{q-q_{k+1}e_{k+1}}(y) \quad \text{for all } y \in s(\alpha)(\lim (\Lambda_n, p_n))^\infty.
\]

So we may assume without loss of generality that \(p_{k+1} = q_{k+1} = 0\). Write \(p'\) and \(q'\) for the elements of \(\mathbb{N}^k\) whose entries are the first \(k\) entries of \(p\) and \(q\).

We have \(v \in \Lambda_n\) for some \(n\), so there exists \(w \in \Lambda_0^0\) and \(g \in \pi \Lambda\) such that \(v = (w, gH_n)\). Suppose first that there exists \(x \in \nu \Lambda^\infty\) such that \(\sigma^{p'}(x) \neq \sigma^{q'}(x)\), then the infinite path \((x, gH_n) \in \nu \Lambda^\infty\) such that

\[
(x, gH_n)(0, m) := (x(0, m), c_n(x(0, m))^{-1}gH_n)
\]

also satisfies \(\sigma^{p'}((x, gH_n)) \neq \sigma^{q'}((x, gH_n))\). By Lemma 5.2, we may choose an infinite path \(y\) such that \(y|_{\mathbb{N}^\times\{0\}} = (x, gH_n)\), and then \(y \in \nu(\lim (\Lambda_n, p_n))^\infty\) satisfies \(\sigma^p(y) \neq \sigma^q(y)\).

Now suppose that every path \(x \in \nu \Lambda^\infty\) satisfies \(\sigma^{p'}(x) = \sigma^{q'}(x)\). Then by condition 2 of Theorem 5.1, we may fix \(x \in \nu \Lambda^\infty\) and \(N \in \mathbb{N}\) such that \(c_N(x(0, p')) \neq c_N(x(0, q'))\). It then follows from the definition of the \(c_j\) that \(c_j(x(0, p')) \neq c_j(x(0, q'))\) whenever \(j \geq N\). So with \(j := \max\{N, n\}\), we have

\[
(x, gH_j)((j - n)e_{k+1} + p) \neq (x, gH_j)((j - n)e_{k+1} + q),
\]

and therefore \(x(g)\) satisfies \(\sigma^p(x^g) \neq \sigma^q(x^g)\) as required. Hence condition 2 of Theorem 5.1 implies that \(\lim (\Lambda_n, p_n)\) has no local periodicity.

To show that if \(\lim (\Lambda_n, p_n)\) has no local periodicity then condition 2 of Theorem 5.1 holds, we prove the contrapositive statement. Suppose that condition 2 of Theorem 5.1 does not hold. Fix \(v \in \Lambda^0\) and \(p, q \in \mathbb{N}^k\) such that \(\sigma^p(x) = \sigma^q(x)\) for
all \(x \in v\Lambda^\infty \) and \(c_n(x(p, p + l)) = c_n(x(q, q + l)) \) for all \(n \in \mathbb{N} \), \(l \in \mathbb{N}^k \). Then for each \(x \in v\Lambda^\infty \) and each \(g = (g_n)^\infty_{n=1} \in \lim(G_n, p_n) \), we have \(\sigma^p(x, g_n)(0, l) = \sigma^n(x, g_n)(0, l) \) for all \(n \in \mathbb{N} \) and \(l \in \mathbb{N}^k \). Hence Lemma 5.2 implies that every \(y \in v(\lim(\Lambda_n, p_n))^\infty \) satisfies \(\sigma^{(p, 0)}(y) = \sigma^{(q, 0)}(y) \).

\[\square \]

6. Projective limit \(k \)-graphs

Let \((\Lambda_n, \Lambda_{n+1}, p_n)_{n=1}^\infty \) be a sequence of row-finite coverings of \(k \)-graphs with no sources as in Section 2.3. We aim to show that the sets \((\lim(\Lambda_i))^m := \lim(\Lambda_i^m, p_i) \) under the projective limit topology with the natural (coordinate-wise) range and source maps specify a topological \(k \)-graph (in the sense of Yeend). Moreover, we show that the associated topological \(k \)-graph \(C^* \)-algebra is isomorphic to the full corner \(P_0 C^*(\lim(\Lambda_n; p_n)) P_0 \) determined by \(P_0 := \sum_{n \in \mathbb{N}^0} s_n \). In particular, when the \(\Lambda_n \) and \(p_n \) are as in 4.1 the \(C^* \)-algebra of the projective limit topological \(k \)-graph is isomorphic to the crossed product of \(C^*(\Lambda) \) by the coaction of the projective limit of the groups \(G_i \) obtained from Theorem 3.1.

Let \((\Lambda_n, \Lambda_{n+1}, p_n)_{n=1}^\infty \) be a sequence of row-finite coverings of \(k \)-graphs with no sources. Let \(\lim(\Lambda_i, p_i) \) be the projective limit category, equipped with the projective limit topology. That is, \(\lim(\Lambda_i, p_i) \) consists of all sequences \((\lambda_i)_{i=1}^\infty \) such that each \(\lambda_i \in \Lambda_i \) and \(p_i(\lambda_{i+1}) = \lambda_i \); the structure maps \(\tilde{r}, \tilde{s}, \tilde{d} \) and \(\tilde{id} \) on \(\lim(\Lambda_i, p_i) \) are obtained by pointwise application of the corresponding structure maps for \(\Lambda \). The cylinder sets \(Z(\lambda_1, \ldots, \lambda_j) := \{(\mu_i)_{i=1}^\infty \in \lim(\Lambda_i, p_i) : \mu_i = \lambda_i \text{ for } 1 \leq i \leq j\} \), form a basis of compact open sets for a locally compact Hausdorff topology.

Define \(\tilde{d} : \lim(\Lambda_i, p_i) \to \mathbb{N}^k \) by \(\tilde{d}(\lambda_i)_{i=1}^\infty := d(\lambda_i) \). Since the \(p_i \) are degree-preserving, we have

\[\tilde{d}(\lambda_i)_{i=1}^\infty = d(\lambda_i) \quad \text{for all } i \geq 1. \]

For fixed \(\lambda = (\lambda_i)_{i=1}^\infty \in \lim(\Lambda_i, p_i)^{m+n} \), the unique factorisation property for each \(\lambda_i \) produces unique elements \(\lambda(0, m) := (\lambda_i(0, m))_{i=1}^\infty \in \lim(\Lambda_i, p_i)^m \) and \(\lambda(m, n) := (\lambda_i(m, n))_{i=1}^\infty \in \lim(\Lambda_i, p_i)^n \) such that \(\lambda = \lambda(0, m) \lambda(m, n) \); that is, \((\lim(\Lambda_i, p_i), \tilde{d}) \) is a second-countable small category with a degree functor satisfying the factorisation property.

The identity \(\tilde{d}(\lambda_i)_{i=1}^\infty = d(\lambda_i) \) for all \(i \geq 1 \) implies that \(Z(\lambda_1, \ldots, \lambda_j) \) is empty unless \(d(\lambda_1) = \cdots = d(\lambda_j) \), and it follows that \(\tilde{d} \) is continuous.

We claim that \(\tilde{r} \) and \(\tilde{s} \) are local homeomorphisms. To see this, fix a cylinder set \(Z(v_1, \ldots, v_j) \subset \lim(\Lambda_i, p_i)^0 \), and for \(\lambda \in v_1 \Lambda_1 \) and \(2 \leq l \leq j \), let \(v_lp_1^{-1}_l(\lambda) \) be the unique element of \(v_1 \Lambda_l \) such that \(p_1 \circ p_2 \circ \cdots \circ p_{l-1}(v_lp_1^{-1}_l(\lambda)) = \lambda \). Then

\[\tilde{r}^{-1}(Z(v_1, \ldots, v_j)) \cap \lim(\Lambda_i, p_i)^n := \sqcup_{\lambda \in v_1 \Lambda_1} Z(\lambda, v_2p_1^{-1}_1(\lambda), \ldots, v_jp_1^{-1}_1(\lambda)) \]

which is clearly open, showing that \(\tilde{r} \) is continuous. Moreover, this same formula shows that for \(\lambda = (\lambda_i)_{i=1}^\infty \in \lim(\Lambda_i, p_i) \), the restriction of \(\tilde{r} \) to \(Z(\lambda_1) \) is a homeomorphism, and \(\tilde{r} \) is a local homeomorphism as claimed. A similar argument shows that \(\tilde{s} \) is also a local homeomorphism.
It is easy to see that the inverse image under composition of the cylinder set
\[Z(\lambda_1, \ldots, \lambda_j) \in \bigcup_{p+q=n} Z(\lambda_1(0,p), \ldots, \lambda_j(0,p)) \times Z(\lambda_1(p,q), \ldots, \lambda_j(p,q)) \]
of cartesian products of cylinder sets and hence is open, so that composition is
continuous, and it follows that \((\lim_{\infty}(\Lambda_i, p_i), \overline{d})\) is a topological \(k\)-graph in the sense of Yeend [21, 20].

Let \(\lim_{\infty}(\Lambda_n; p_n)\) be as described in Section 2.3 and let \(P_0\) denote the full projection
\[\sum_{v \in \Lambda^0} s_v \in M(C^*(\lim_{\infty}(\Lambda_n; p_n))). \]
For the following proposition, we need to describe
\[P_0 C^*(\lim_{\infty}(\Lambda_n; p_n)) P_0 \] in detail. For \(n \geq m \geq 1\), we write \(p_{m,n} : \Lambda_n \to \Lambda_m\) for the
covering map \(p_{m,n} := p_m \circ \cdots \circ p_{m-1}\), with the convention that \(p_{n,n}\) is the identity
map on \(\Lambda_n\). For \(v \in \Lambda^0_n\), and \(l \leq m\), we denote by \(\alpha_{m,n}(v)\) the unique path in
\[\lim_{\infty}(\Lambda_n; p_n)^{(m-1)k+1} \] whose source is \(v\) and whose range is \(p_{l,m}(v)\). In particular,
\(\alpha_{1,m}(v)\) the unique path in \(\lim_{\infty}(\Lambda_n; p_n)^{(m-1)k+1}\) whose source is \(v\) with range in \(\Lambda_1\).
For \(\lambda \in \Lambda_m\),
\[s_{\alpha_{1,m}(r(m))} s_{\alpha_{1,m}(r(m))} s_{p_{1,1}(1)} = s_{\alpha_{1,m}(r(m))} s_{\alpha_{1,m}(s(m))} s_{\alpha_{1,m}(s(m))}. \]
Furthermore, \(P_0 C^*(\lim_{\infty}(\Lambda_n, p_n)) P_0\) is equal to the closed span
\[P_0 C^*(\lim_{\infty}(\Lambda_n, p_n)) P_0 = \text{span}\{s_{\alpha_{1,m}(r(m))} s_{\alpha_{1,m}(s(m))} : m \geq 1, \lambda \in \Lambda_m\}. \]

Proposition 6.1. Let \((\Lambda_n, \Lambda_{n+1}, p_n)_{n=1}^\infty\) be a sequence of row-finite coverings of \(k\)-graphs with no sources, and let \(\lim_{\infty}(\Lambda_n, p_n)\) be the associated \((k+1)\)-graph as in [12]. Let \(P_0 := \sum_{v \in \Lambda^0_n} s_v \in M(C^*(\lim_{\infty}(\Lambda_n; p_n)))\). Let \((\lim_{\infty}(\Lambda_n, p_n), \overline{d})\) be the topological \(k\)-graph defined above. Then there is a unique isomorphism
\[\pi : P_0 C^*(\lim_{\infty}(\Lambda_n, p_n)) P_0 \to C^*(\lim_{\infty}(\Lambda_n, p_n)) \]
such that for \(\lambda \in \Lambda_m\),
\[\pi(s_{\alpha_{1,m}(r(m))} s_{\alpha_{1,m}(s(m))}) = X Z(p_{1,1}(1), p_{2,1}(1), \ldots, p_{m-1,1}(1), 1). \]
In particular, with the notation and assumptions [11], the \(C^*-\)algebra \(C^*(\lim_{\infty}(\Lambda_n, p_n))\)
of the topological \(k\)-graph \(\lim_{\infty}(\Lambda_n, p_n)\) is isomorphic to the coaction crossed-product
\(C^*(\Lambda) \rtimes G\).

Proof. The final statement will follow from Theorem 4.3 once we establish the first statement.

To prove the first statement we will use Allen’s gauge-invariant uniqueness theorem for corners in \(k\)-graph algebras [11]. For this, we adopt Allen’s notation: for \(\mu, \nu \in \Lambda_n^0\), we let \(t_{\mu, \nu} := s_{p_{1,1}(1)} s_{\alpha_{1,m}(r(m))} s_{\alpha_{1,m}(s(m))}\) for some \(m \geq 1\) and \(\mu', \nu' \in \Lambda_m\) with \(s(\mu') = s(\nu')\). By [11] Corollary 3.7, there is an isomorphism \(\theta\) of \(P_0 C^*(\lim_{\infty}(\Lambda_n; p_n)) P_0\) onto Allen’s universal algebra \(C^*(\lim_{\infty}(\Lambda_n; p_n), \Lambda^0_1)\) (see Definition 3.1 and the following paragraphs in [11]) which satisfies \(\theta(t_{\mu, \nu}) = T_{\mu, \nu}\) for all \(\mu, \nu\). It therefore suffices here to show that there is an isomorphism \(\psi : C^*(\lim_{\infty}(\Lambda_n; p_n), \Lambda^0_1) \to C^*(\lim_{\infty}(\Lambda_n, p_n))\) such that
\[\psi(T_{\alpha_1,m}(r(\mu)) \mu,\alpha_1,m(r(\nu)) \nu) = \chi z(p_{1,m}(\mu),...,m)z(p_{1,m}(\nu),...,\nu) \] for all \(m \geq 1 \) and \(\mu, \nu \in \Lambda_m \) with \(s(\mu) = s(\nu) \); the composition \(\pi := \psi \circ \theta \) clearly satisfies (3), and it is uniquely specified by (3) because the elements \(\{ t_{\alpha_1,m}(r(\lambda))\lambda,\alpha_1,m(s(\lambda)) : m \geq 1, \lambda \in \Lambda_m \} \) generate \(P_0c^*(\lim(\Lambda_n;p_n))P_0 \) as a \(C^* \)-algebra.

Let \(\hat{\Gamma} \) denote the topological \(k \)-graph \(\lim(\Lambda_i,p_i) \). Since \(\Gamma \) is row-finite and has no sources, \(\partial \Gamma = \Gamma^\infty \). As in [21], for open subsets \(U, V \subset \Gamma \), let \(Z_{\hat{\Gamma}}(U \times_s V, m) \) denote the set \(\{ (\mu x, m, \nu x) : \mu \in U, \nu \in V, x \in \Gamma^\infty, s(\mu) = s(\nu) = r(x) \} \). Then \(\mathcal{G}_\Gamma \) is the locally compact Hausdorff topological groupoid

\[\mathcal{G}_\Gamma = \{ (x, m - n, y) : x, y \in \Gamma^\infty, m, n \in \mathbb{N}, \sigma^m(x) = \sigma^n(y) \} \]

where the \(Z_{\hat{\Gamma}}(U \times_s V, m) \) form a basis of compact open sets for the topology.

For \(m \geq 1 \) and \(\lambda \in \Lambda_m \), let \(U_{m,\lambda} := Z(p_{1,m}(\lambda),\ldots,\lambda) \subset \Gamma \). So the \(U_{m,\lambda} \) are a basis for the topology on \(\Gamma = \lim(\Lambda_i,p_i) \). Now for \(m \geq 1 \) and \(\mu, \nu \in \Lambda_m \) with \(s(\mu) = s(\nu) \), let

\[u_{\alpha_1,m}(r(\mu)) \mu,\alpha_1,m(r(\nu)) \nu := \chi z(U_{m,\mu} \star U_{m,\nu},d(\mu) - d(\nu)) \in C_*(\mathcal{G}_\Gamma) \]

Tedious but routine calculations using the definition of the convolution product and the involution on \(C_*(\mathcal{G}_\Gamma) \subset C^*(\mathcal{G}_\Gamma) \) show that \(\{ u_{\alpha_1,m}(r(\mu)) \mu,\alpha_1,m(r(\nu)) \nu : m \geq 1, \mu, \nu \in \Lambda_m, s(\mu) = s(\nu) \} \) is a Cuntz-Krieger (\(\lim(\Lambda_n;p_n), \Lambda^0 \)) family in \(C^*(\mathcal{G}_\Gamma) \). By the universal property of \(C^*(\lim(\Lambda_n;p_n), \Lambda^0) \) (see [1, Section 3]), there is a homomorphism \(\psi : C^*(\lim(\Lambda_n;p_n), \Lambda^0) \to C^*(\mathcal{G}_\Gamma) \) such that

\[\psi(T_{\alpha_1,m}(r(\mu)) \mu,\alpha_1,m(r(\nu)) \nu) = u_{\alpha_1,m}(r(\mu)) \mu,\alpha_1,m(r(\nu)) \nu \]

for each \(\mu, \nu \). The canonical gauge action \(\beta : \mathbb{T}^k \to \text{Aut}(C^*(\mathcal{G}_\Gamma)) \) determined by \(\beta_z(f)(x, m, y) := z^m f(x, m, y) \) satisfies \(\psi \circ \gamma_z = \beta_z \circ \psi \) for all \(z \in \mathbb{T}^k \), where \(\gamma \) is the gauge action on \(C^*(\lim(\Lambda_n;p_n), \Lambda^0) \). Proposition 4.3 of [21] shows that each \(u_{\alpha_1,m}(r(\mu)) \mu,\alpha_1,m(r(\nu)) \mu \) is nonzero, and it follows from the gauge-invariant uniqueness theorem [1, Theorem 3.5] that \(\psi \) is injective. The topologies on \(\Gamma^{(0)} \) and on \(\mathcal{G}_\Gamma \) are generated by the collections \(\{ U_{m,\lambda} : m \geq 1, \lambda \in \Lambda_m \} \) and \(\{ U_{m,\mu} \star U_{m,\nu} : m \geq 1, \mu, \nu \in \Lambda_m, s(\mu) = s(\nu) \} \) respectively of compact open sets. Since \(C^*(\{ u_{\alpha_1,m}(r(\mu)) \mu,\alpha_1,m(r(\nu)) \nu : m \geq 1, \mu, \nu \in \Lambda_m, s(\mu) = s(\nu) \}) \subset C^*(\mathcal{G}_\Gamma) \) contains the characteristic functions of these sets, it follows that \(\psi \) is also onto, and this completes the proof.

Remark 6.2. The final statement of Proposition 6.1 suggests that \(\lim(\Lambda_i,p_i) \) should be thought of as a skew-product of \(\Lambda \) by \(G \).

To make this precise, note that for \(\lambda \in \Lambda \), \(c(\lambda) := (c_n(\lambda))_{n=1}^\infty \) belongs to \(G \), and \(c : \Lambda \to G \) is then a cocycle. There is a natural bijection between the cartesian product \(\Lambda \times G \) and the topological \(k \)-graph \(\lim(\Lambda_i,p_i) \), so we may view \(\Lambda \times G \) as a topological \(k \)-graph by pulling back the structure maps from \(\lim(\Lambda_i,p_i) \). What we obtain coincides with the natural definition of the skew-product \(\Lambda \times_c G \).

With this point of view, we can regard Proposition 6.1 as a generalisation of [15, Theorem 7.1(ii)] to profinite groups and topological \(k \)-graphs: \(C^*(\Lambda \times_c G) \cong C^*(\Lambda) \times_s G \).

Example 6.3 (Example 3.3 continued). Resume the notation of Examples 3.3 and 4.2. The resulting projective limit \(\lim(\Lambda_n,p_n) \) is the topological 1-graph \(E \) associated to
the odometer action of \mathbb{Z} on the Cantor set as in [21, Example 2.5(3)]. That is, E can be realised as the skew-product of B_1^1 by the 2-adic integers \mathbb{Z}_2 with respect to the functor $c : B_1^1 \to \mathbb{Z}_2$ determined by $c(f) = (1, 1, 1, \ldots)$, where f is the loop edge generating B_1^1.

References

ASS. PROF. DAVID PASK, SCHOOL OF MATHEMATICS AND APPLIED STATISTICS, UNIVERSITY OF WOLLONGONG, WOLLONGONG, NSW, 2522, AUSTRALIA
E-mail address: dpask@uow.edu.au

PROF. JOHN QUIGG, DEPARTMENT OF MATHEMATICS AND STATISTICS, ARIZONA STATE UNIVERSITY, TEMPE, ARIZONA, 85287, USA
E-mail address: quigg@asu.edu

DR. AIDAN SIMS, SCHOOL OF MATHEMATICS AND APPLIED STATISTICS, UNIVERSITY OF WOLLONGONG, WOLLONGONG, NSW, 2522, AUSTRALIA
E-mail address: asims@uow.edu.au