Room-temperature ferromagnetism in Mn and Fe codoped In$_2$O$_3$

G. Peleckis, X. L. Wang,$^{a)$ and S. X. Dou

Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, New South Wales 2522, Australia

(Received 2 June 2005; accepted 7 March 2006; published online 28 March 2006)

The synthesis and characterization of polycrystalline room-temperature ferromagnetic semiconductor (In$_{0.9}$Fe$_{0.1-x}$Mn$_x$)$_2$O$_3$ (x = 0–0.1) oxide are reported. All of the samples with intermediate x values are ferromagnetic at room temperature. The highest saturation magnetization moment at 300 K per total amount of magnetic ion is reached in the (In$_{0.9}$Fe$_{0.05}$Mn$_{0.05}$)$_2$O$_3$ sample. The lattice constant a increases linearly with increasing Mn content. Fe-only doped samples were paramagnetic, while a Mn-only doped sample was found to be ferromagnetic below T_c = 46 K.

After reported ferromagnetism in Mn-doped GaAs, considerable research was concentrated on finding new semiconductors that can exhibit ferromagnetic feature. Usually diluted magnetic semiconductors (DMSs) are formed when transition metal ions, such as 3d elements, are doped into the host lattice of a semiconductor. Many materials have been found, which could be considered as good candidates for DMS applications. However, due to the small solubility of magnetic ions in the host semiconductor, ferromagnetism in some cases is attributed to the clusters of dopants formed during the sample preparation procedure. Therefore, new diluted magnetic semiconductors based on host semiconductors with high solubility of transition metal ions are highly desirable.

Recently Yoo et al. and He et al. have reported both polycrystalline bulks and thin film samples of a diluted magnetic semiconductor—Fe and Cu codoped In$_2$O$_3$ oxides. The solubility of Fe ions in the host compound was found to be around 20%. In order to achieve multivalence and thus ferromagnetism, some Cu was codoped along with Fe. Their samples show clear ferromagnetic features at room temperature. In addition, both articles investigated the possible contribution of magnetic impurities to the ferromagnetism in detail, showing that the ferromagnetism in their samples is intrinsic. Mn is a very good agent to introduce multivalent species in addition to its high magnetic moment.

X-ray diffraction patterns were refined applying Rietveld refinement technique using RIETICA software. The x-ray diffraction patterns for all the samples can be indexed based on the unit cell of a cubic In$_2$O$_3$. The observed, calculated, and difference diffraction profiles for all the samples are shown in Fig. 1. It can be seen that the refinement results are in excellent agreement with the experimental data. Two end compounds with x = 0 and 0.1, i.e., (In$_{0.9}$Fe$_{0.1}$)$_2$O$_3$ and (In$_{0.9}$Mn$_{0.1}$)$_2$O$_3$, and x = 0.02 and 0.08 obviously are of single phase, as no any other visible peaks present in these samples, as shown in the inset of Fig. 1. Close examinations of diffraction profiles revealed presence of tiny traces of MnFe$_2$O$_4$ as a secondary phase in samples with x = 0.04 and 0.06. The amounts of this impurity have been determined to be 0.34 and 0.13 wt % for x = 0.04 and 0.06, respectively, after numerous high quality Rietveld refinements with goodness factors R_p = 9.72, RWP = 14.43, and χ^2 = 0.91 (x = 0.06). The dependence of the lattice parameter a (obtained by refinement analyses) on x is represented in the left inset of Fig. 1. With increasing

$^{a)$Electronic mail: xiaolin@uow.edu.au

FIG. 1. Rietveld refinement of x-ray diffraction pattern for sample with x = 0.08. Insets: right—magnified view of Rietveld refinements for samples with different x; left—dependence of lattice parameter a on Mn content x. © 2006 American Institute of Physics. [DOI: 10.1063/1.2191093]
Mn content the lattice parameter \(a \) increased almost linearly, from \(a = 10.109 \) Å to \(a = 10.118 \) Å, when \(x \) rose from 0 to 0.1, respectively. The obtained dependence of lattice parameter \(a \) on Mn content is in a good agreement with data published by Yoo et al.,\(^{10}\) where they showed a decrease in \(a \) with increasing Fe content. This result is reasonable if the ionic radii of Mn and Fe are compared. If we assume that both magnetic ions, i.e., Mn and Fe, are present in the same oxidation state of 3+ in octahedral configuration, then \(r_{\text{Fe}^{3+}} = 0.72 \) Å and \(r_{\text{Mn}^{3+}} = 0.69 \) Å.\(^{13}\) This indicates that the expansion of the lattice parameter \(a \) is due to the bigger ionic size of Mn^{3+}. The change in lattice parameter \(a \) suggests that magnetic ions were successfully introduced into the crystal structure of \(\text{In}_2\text{O}_3 \).

The molar magnetic susceptibility (\(\chi \)) versus temperature \((T) \) curves for \((\text{In}_{0.9}\text{Mn}_{0.1})_2\text{O}_3 \) and \((\text{In}_{0.9}\text{Fe}_{0.1})_2\text{O}_3 \) samples is shown in Figs. 2(a) and 2(b), respectively. The zero field cooled (ZFC) measurements were done during warming in a field of 2000 Oe (Quantum Design, MPMS XL). The insets of Figs. 2(a) and 2(b) depict the inverse magnetic susceptibility \((1/\chi) \) as a function of \(T \). There are distinct differences in the magnetic properties for these samples. The Fe-only doped sample showed paramagnetic behavior over the whole temperature range, while the Mn-only doped sample exhibits ferromagnetic features below \(T_C = 46 \) K. The observed paramagnetism for the Fe-only doped sample contradicts the observed ferromagnetism in Fe-doped \(\text{In}_2\text{O}_3 \) as reported in Ref. 10, which is probably caused by the lack of multivalent magnetic ions in the material.

The calculated effective magnetic moments (\(\mu_{\text{eff}} \)) from Eq. (1) are \(\mu_{\text{eff}} = 2.87 \mu_b/\text{Mn} \) and \(\mu_{\text{eff}} = 2.25 \mu_b/\text{Fe} \) for Mn- and Fe-doped samples, respectively. The spin state assessment for the sample with \(x = 0 \) showed that Fe is present as Fe^{3+} in a low spin (LS) state. On the other hand the calculated \(\mu_{\text{eff}} = 2.87 \mu_b/\text{Mn} \) for sample with \(x = 0.1 \) corresponds to that of Mn^{3+} in an intermediate spin (IS) state.

Figure 3 represents the dependence of molar magnetic susceptibility (\(\chi \)) on temperature \((T) \) for samples with intermediate \(x \) values \((0 < x < 0.1) \). The measurement conditions were the same as for Mn- and Fe-only doped samples. It can be seen that all the samples are ferromagnetic at room temperature. One could argue that the observed room-temperature ferromagnetism arises from the impurity phase (MnFe\(_2\)O\(_4\)).\(^{15,16}\) However, if the observed magnetization is contributed only from the MnFe\(_2\)O\(_4\) phase, then the calculated magnetization should be close to 40 emu/g at 5 K and \(H > 3 \) T.\(^{15,16}\) In fact, we have prepared pure impurity sample of MnFe\(_2\)O\(_4\) using the same preparation conditions for all other samples used in this work. Our MnFe\(_2\)O\(_4\) samples showed a magnetization of 43 emu/g at 10 K and \(H > 3 \) T, the same as that reported for MnFe\(_2\)O\(_4\). Sample with \(x = 0.06 \) gives a magnetization of \(\sim 400 \) emu/g at 10 K in a field \(H = 2 \) T, if only MnFe\(_2\)O\(_4\) contribution is considered. This value is one order of magnitude greater than that reported for pure MnFe\(_2\)O\(_4\).\(^{15,16}\) Implying that the tiny amount of MnFe\(_2\)O\(_4\) impurity make little contribution to the magnetization observed in our codoped \(\text{In}_2\text{O}_3 \) samples with \(x = 0.04 \) and 0.06. In addition, if the contribution from MnFe\(_2\)O\(_4\) phase is deducted from \(\chi-T \) curves, calculated difference between curves is less than 1%. Furthermore, if the observed ferromagnetic feature arises only from the impurity phase, the values of magnetization should be proportional to the amount of impurity present in the system, i.e., sample with \(x = 0.04 \) should have highest values of magnetization.

The data for inverse susceptibility curves \((1/\chi) \) [insets of Figs. 2(a) and 2(b)] were fitted by applying the modified Curie-Weiss law:

\[
\chi = \frac{C}{T - \Theta_p} + \chi_0,
\]

where \(\chi_0 \) is the temperature independent susceptibility (sum of Pauli, Landau, and core susceptibilities), and \(\Theta_p \) is the Pauli-Weiss temperature. The calculated \(\Theta_p \) values were \(-8.13 \) and 23.97 K for \(x = 0 \) and 0.1, respectively. The calculated effective magnetic moments (\(\mu_{\text{eff}} \)) from Eq. (1) are \(\mu_{\text{eff}} = 2.87 \mu_b/\text{Mn} \) and \(\mu_{\text{eff}} = 2.25 \mu_b/\text{Fe} \) for Mn- and Fe-doped samples, respectively. The spin state assessment for the sample with \(x = 0 \) showed that Fe is present as Fe^{3+} in a low spin (LS) state. On the other hand the calculated \(\mu_{\text{eff}} = 2.87 \mu_b/\text{Mn} \) for sample with \(x = 0.1 \) corresponds to that of Mn^{3+} in an intermediate spin (IS) state.

![Figure 2](image1.png)

FIG. 2. Magnetic susceptibility (\(\chi \)) vs temperature \((T) \): (a) \((\text{In}_{0.9}\text{Mn}_{0.1})_2\text{O}_3 \) and (b) \((\text{In}_{0.9}\text{Fe}_{0.1})_2\text{O}_3 \) samples under 2000 Oe applied magnetic field. Insets represent the inverse magnetic susceptibility \((1/\chi) \) data under the same conditions with modified Curie-Weiss law fittings.

![Figure 3](image2.png)

FIG. 3. Magnetic susceptibility (\(\chi \)) as a function of temperature \((T) \) for samples with \(0 < x < 1 \) under 2000 Oe applied magnetic field.
which is not the case in our samples. Another strong fact is that there are significant differences in irreversibility of the \(x\)-\(T\) curves for different Mn content \(x\) (Fig. 3). Lastly, magneto-optical imaging (MOI) revealed that samples with intermediate \(x\) values magnetized homogeneously and showed no sign of localized domains formed by MnFe\(_2\)O\(_4\) impurity. These findings strongly suggested that observed ferromagnetism is rather an intrinsic property of the material.

Figure 4(a) shows magnetization \((M)\) versus applied magnetic field \((H)\) at 10 K for all the samples. As the \(x\) value increases there is a distinct ferromagnetic response in the \(M-H\) curves. The maximal value of magnetization of 0.98\(\mu_B/(\text{Mn+Fe})\) ion was achieved for \(x=0.06\). The Mn-only doped sample shows a high coercive field \(H_c\) of about 5000 Oe. Magnetization data of the samples at 300 K are shown in Fig. 4(b). Here both end compounds, i.e., \(x=0\) and \(x=0.1\), show no trace of ferromagnetism [inset of Fig. 4(b)]. It can be seen that magnetizations at 300 K saturate at a small field of 0.1 T for samples with \(x=0.04, 0.06,\) and \(0.08\). The saturation magnetization \((M_s)\) of these samples increased and reached a maximal value of \(M_s=0.35\mu_B/(\text{Mn+Fe})\) when \(x=0.06\), and then dropped, when \(x>0.06\).

Yoo \textit{et al.}\(^{10}\) found that Fe\(^{3+}\) in a high spin (HS) state contributed to the saturation magnetization in Fe-doped In\(_2\)O\(_3\). In contrast to their result, we found that for both samples with \(x=0.06\) and 0.04, the \(M_s\) data most likely correspond to that of Fe\(^{3+}\) (LS) and Mn\(^{3+}\) (IS) states. These values of both valences and spin states support the fact that the lattice expansion was caused by increase/decrease of Mn\(^{3+}/\text{Fe}^{3+}\) content in the samples.

In summary, a series of polycrystalline Fe and Mn codoped (In\(_{0.9}Fe_{0.1-x}Mn_x\))\(_2\)O\(_3\) oxide crystals was prepared by a conventional solid state synthesis technique. The lattice parameter \(a\) increases with increasing Mn content \((x)\). In contrast to the already reported data,\(^{10}\) the Fe-only \((x=0)\) doped sample was paramagnetic at room temperature. The Mn-only \((x=0.1)\) doped sample was ferromagnetic below \(T_C=46\) K. Samples with 0\(<x<0.1\) values were ferromagnetic at room temperature. Maximum \(M_s\) values of 0.35\(\mu_B/(\text{Fe+Mn})\) and 0.98\(\mu_B/(\text{Fe+Mn})\) were achieved for \(x=0.06\) at 300 and 10 K, respectively, which was in good agreement with the literature data.\(^{10}\) Further structural and transport studies are essential in order to clarify the nature of observed high temperature ferromagnetism in this material.

This work was supported by the Australian Research Council under Discovery Project DP0558753 to one of the authors (X.L.W.). Another author (G.P.) thanks the Australian government and the University of Wollongong for providing IPRS and UPA scholarships for his Ph.D. studies.