Integration

3.1 The indefinite integral and the definite integral

3.1.1 The indefinite integral

Suppose that

\[\frac{dy}{dx} = 1 \]

True or False The function \(y \) is given by

\[y = x? \]
Differentiate the following functions

\[
y = x \quad \frac{dy}{dx} = \\
y = x + 1 \quad \frac{dy}{dx} = \\
y = x + 2 \quad \frac{dy}{dx} = \\
y = x + 3 \quad \frac{dy}{dx} = \\
\]

Suppose that

\[
\frac{dy}{dx} = 1
\]

Then

\[
y = \underline{_______}
\]
We know that

\[
\frac{d}{dx} (x^2) = \underline{______}
\]

True or False

Therefore, the integral of \(2x\) with respect to \(x\) is \(x^2\)?

This is written

\[
\int 2x \, dx = x^2
\]

where the symbols \(\int \ldots \, dx\) denote ‘the integral of \(\ldots\) with respect to \(x\)’.
3.1.2 The antiderivative

Definition

Suppose that \(\frac{d}{dx} \mathcal{F}(x) = f(x) \). The \(\mathcal{F} \) is called an antiderivative or indefinite integral or primitive of a function \(f \).

The antiderivative \(\mathcal{F} \) is usually denoted by

\[
\mathcal{F}(x) = \int f(x) \, dx
\]

More generally,

\[
\int f(x) \, dx = \mathcal{F}(x) + c
\]

where \(c \) is known as the constant of integration.
Evaluate the integrals

1. \[\int 1 \cdot dx \]

2. \[\int 2x \, dx \]

3. \[\int 3x^2 \, dx \]

4. \[\int \cos (x) \, dx \]

5. \[\int \sec^2 (x) \, dx \]

6. \[\int \frac{1}{x} \, dx \]

7. \[\int e^x \, dx \]

8. \[\int \sin (x) \, dx \]
\[c = \text{constant} \]
\[x + c \]
\[x^2 + c \]
\[x^3 + c \]
\[\sin x + c \]
\[\tan x + c \]
\[\ln x + c \]
\[e^x + c \]
\[-\cos x + c \]
Suppose that
\[\frac{d}{dx} \mathcal{F}(x) = f(x) \]

Hence
\[\int f(x) \, dx = \mathcal{F} + c \]

Thus
\[\frac{d}{dx} \mathcal{F}(x) = \frac{d}{dx} \left[\int f(x) \, dx \right] \]
\[= f(x) \]
i.e. \[\frac{d}{dx} \left[\int f(x) \, dx \right] = f(x) \]
3.2 The Definite Integral

3.2.1 Fixed end points

If \mathcal{F} is the antiderivative of a function f, then the definite integral of f is given by

$$\int_{a}^{b} f(x) \, dx = \left[\mathcal{F}(x) \right]_{a}^{b} = \mathcal{F}(b) - \mathcal{F}(a)$$

Example Calculate

$$\int_{0}^{2} 1 \cdot dx = \left[_ \right]_{0}^{2} = _$$

a and b are called the limits of integration, and x the dummy variable of integration. The function $f(x)$ is called the integrand.
$x \quad 2 - 0 = 0$
Question. What does $\int_{a}^{b} f(x) \, dx$ ‘mean’?
Evaluate the definite integrals

1. \[\int_{0}^{5} 1 \cdot dx \]
2. \[\int_{1}^{5} x dx \]
3. \[\int_{2}^{3} 6x^2 dx \]
4. \[\int_{0}^{\pi/2} \cos (2x) dx \]
5. \[\int_{0}^{\pi/4} \sec^2 (x) dx \]
6. \[\int_{e}^{e^2} \frac{4}{x} dx \]
7. \[\int_{0}^{2} 5e^x dx \]
$5 \left(e^2 - 1 \right)$
The value of the integral depends on the function to be integrated, not on the particular variable used, i.e.

\[
\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt = \int_{a}^{b} f(u)du
\]

\[
= \ldots = \mathcal{F}(b) - \mathcal{F}(a)
\]

e.g.

\[
\int_{1}^{2} 2xdx = \int_{1}^{2} 2tdt = \int_{1}^{2} 2udu
\]

\[
= \left[\underline{\quad}\right]_{1}^{2} = \underline{\quad}
\]
\[x^2 \quad 4 - 1 = 3 \]
3.2.2 Variable Endpoints

A definite integral can take the following form \(\int_a^x f(x)\,dx \) where the upper limit is allowed to vary. For such integrals it is best to use a letter different from \(x \) for the variable of integration; thus we write

\[
\int_a^x f(t)\,dt \quad \text{rather than} \quad \int_a^x f(x)\,dx.
\]

Both endpoints may be functions, for example

\[
\int_{g(x)}^{h(x)} f(t)\,dt = [F(t)]_{g(x)}^{h(x)}
\]

\[
= F[h(x)] - F[g(x)]
\]

Motivation?
Evaluate the integrals

1. \[\int_{t}^{t^2} 5 \cdot dx \]

2. \[\int_{\cos t}^{\sin t} \frac{x}{2} \, dx \]

3. \[\int_{0}^{t} \cos \left(\frac{x}{4} \right) \, dx \]

4. \[\int_{e^t}^{e^{2t}} \frac{1}{2x} \, dx \]

5. \[\int_{t}^{5t} \sin (x) \, dx \]
\[5t(t - 1) \]
\[\frac{1}{4} \left(\sin^2 t - \cos^2 t \right) \]
\[4 \sin \left(\frac{t}{4} \right) \]
\[\frac{t}{2} \]
\[\cos (t) - \cos (5t) \]
We know that
\[\int_a^x f(t) \, dt = \mathcal{F}(x) - \mathcal{F}(a) \]

Claim
\[\frac{d}{dx} \int_a^x f(t) \, dt = f(x) \]

Proof
\[\frac{d}{dx} \int_a^x f(t) \, dt = \frac{d}{dx} \left[\mathcal{F}(x) - \mathcal{F}(a) \right] \]
\[= \frac{d}{dx} \left[\mathcal{F}(x) \right] - \frac{d}{dx} \left[\mathcal{F}(a) \right] \]
\[= \frac{d}{dx} \left[\mathcal{F}(x) \right] \]
\[= f(x). \]

Motivation?
A more general result can be found using the chain rule.

Claim

\[
\frac{d}{dx} \int_{a}^{g(x)} f(t) \, dt = f[g(x)] \cdot g'(x)
\]

Motivation?

Example Evaluate \(\frac{d}{dx} \left[\int_{\frac{\pi}{4}}^{x^2} \cos t \, dt \right] \) by

1. Using the above formula
2. By first integrating and then differentiating
1. Use the formula

\[
\begin{align*}
 a &= \\
 f &= \\
 g &= \\
 g' &= \\

 \therefore \frac{d}{dx} \left[\int_{\frac{\pi}{4}}^{x^2} \cos t \, dt \right] &=
\end{align*}
\]
\[
\frac{\pi}{4} \cos t \\
x^2 \\
2x
\]
\[\cos \left(x^2 \right) \cdot 2x \]
2. (i) First do the integration

\[\int_{\pi/4}^{x^2} \cos t \, dt = \left[_ \right]_{\pi/4}^{x^2} \]

\[= _ \]

(ii) Now do the differentiation

\[\frac{d}{dx} \left[\int_{\pi/4}^{x^2} \cos t \, dt \right] = _ \]

\[= _ \]
\[
\sin t \\
\sin (x^2) - \sin \left(\frac{\pi}{4}\right)
\]
\[
\frac{\mathrm{d}}{\mathrm{d}x} \sin \left(x^2 \right) - \frac{\mathrm{d}}{\mathrm{d}x} \sin \left(\frac{\pi}{4} \right)
\]

\[
2x \cos \left(x^2 \right)
\]
Example Evaluate
\[\frac{d}{dx} \left[\int_{0}^{x} (t^2 - 2t + 4) \, dt \right] . \]

\[a = _ \]

\[f = _ \]

\[g = _ \]

\[g' = _ \]

\[\therefore \frac{d}{dx} \left[\int_{0}^{x} (t^2 - 2t + 4) \, dt \right] = \]

\[_ \]
x

$t^2 - 2t + 4$

x

1
\((x^2 - 2x + 4) \cdot 1\)
Example Evaluate

\[
\frac{d}{dx} \left[\int_a^{x^2} (t^2 - 2t + 4)^{3/4} \, dt \right]
\]

\[a = _\]

\[f = _\]

\[g = _\]

\[g' = _\]

\[
\therefore \frac{d}{dx} \left[\int_a^{x^2} (t^2 - 2t + 4)^{3/4} \, dt \right]
\]

\[= _\]

\[= _
\]
\[a \]
\[\left(t^2 - 2t + 4 \right)^{3/4} \]
\[x^2 \]
\[2x \]
\[
\left[(x^2)^2 - 2(x^2) + 4\right]^{3/4} \cdot 2x
\]

\[
(x^4 - 2x^2 + 4)^{3/4} \cdot 2x
\]
3.2.3 Properties of Integrals

(i) \(\int_a^b (f+g)(x)dx = \int_a^b f(x)dx + \int_a^b g(x)dx \)

(ii) \(\int_a^b (\alpha f)(x)dx = \int_a^b \alpha f(x)dx = \alpha \int_a^b f(x)dx \)

(iii) \(\int_a^a f(x)dx = 0 \)

(iv) \(\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx \)

(v) \(\int_a^b f(x)dx = -\int_b^a f(x)dx \)

(vi) If \(f(x) \) is an odd function (i.e.,
\(f(x) = -f(-x) \) for all \(x \))
\(\int_{-a}^a f(x)dx = 0. \)

(vii) If \(f(x) \) is an even function (i.e.,
\(f(x) = f(-x) \) for all \(x \))
\(\int_{-a}^a f(x)dx = 2 \int_0^a f(x)dx. \)

(viii) If \(f(x) \leq g(x) \) for \(a \leq x \leq b \), then
\(\int_a^b f(x)dx \leq \int_a^b g(x)dx \)
3.2.4 Exercises