MATH111 – Spring 2007
Tutorial Sheet – Week 4

This tutorial sheet covers chapter 4 of the notes.

Chapter 4

Revision of Key Ideas

1. The average birth rate of a species per individual per year is \(r \). The fractional death rate of the species is \(d \) per year. The initial number of animals in the population is given by \(N_0 \).

 (a) Write down a word-equation for this model.
 (b) Write down the associated discrete equation model for the size of the species population in year \(n \).
 (c) Write down the closed-form solution to your model. How does the long-term population size depend upon the parameters \(r \) and \(d \)?
 (d) What is the flaw in the linear population model and how is it rectified?
 (e) Name two additional processes that might be included in a more general model.

2. The size of a population is given by the solution of the equation

 \[
y_{n+1} = f(y_n).
 \]

 (a) Sketch the curve \(y = f(y_n) \) for a biological realistic function \(f(y_n) \),
 (b) Identify the four important features that make \(f(y_n) \) a realistic function to describe population dynamics.

3. Consider the difference equation

 \[
x_{n+1} = f(x_n), \quad x_0 = X
 \]

 (a) How are the fixed points of this equation found?
 (b) Why are fixed points important?

4. The population of a species is governed by the difference equation

 \[
x_{n+1} = f(x_n), \quad x_0 = X
 \]

 Explain how cobwebbing is used to determine the dynamics of this model for the specified initial condition.

5. Consider the logistic difference equation

 \[
x_n = r x_n (1 - x_n), \quad 0 < r < 4, \quad 0 < x_0 < 1.
 \]

 (a) By drawing a cobwebbing diagram show that if \(0 < r < 1 \) then \(\lim_{n \to \infty} x_n = 0 \).
 (b) What is the biological meaning of this result?
Exercises

1. Consider the following map

\[x_{n+1} = \frac{27rx_n^2 (1 - x_n)}{16} \]

(a) Show that if \(0 \leq r \leq 4 \) and \(0 \leq x_n \leq 1 \) then \(0 \leq x_{n+1} \leq 1 \).

(b) Show that there is only one fixed point \((x^* = 0) \) for \(0 \leq r < \frac{64}{27} \), two fixed points when \(r = \frac{64}{27} \) and three fixed points for \(\frac{64}{27} \leq r \leq 4 \). Give a formulae for the new pair \(x^* \).

2. Consider the map

\[x_{n+1} = rx_n (1 - x_n^2) \]

(a) Show that if \(0 \leq x_n \leq 1 \) then \(0 \leq x_{n+1} \leq 1 \) provided that \(0 \leq r \leq \frac{3\sqrt{3}}{2} \).

(b) Solve the fixed point equation, and show that there is only one fixed point \((x^* = 0) \) for \(0 \leq r \leq 1 \) and three fixed points when \(1 < r \). Give a formulae for the new pair \(x^* \).

(c) Only one of the new pair of solutions is biologically meaningful: which one is it?

Worked solutions to the exercise questions are available as follows:

1. This question appears in the questions section of Chapter 4. The worked solution appears in the corresponding appendix.

2. Assignment Week 6 (Spring 2004).