
Task 1 (5 marks)
An objective of this task is to estimate the efficiency of indexing.

Assume that a relational table ORDERS contains information about the orders submitted by
the customers.

ORDERS(order#, order_date, product, quantity, price_per_unit)

A relational table ORDERS has a primary key (order#).

Assume that:
(i) a relational table ORDERS occupies 1000 data blocks,
(ii) a blocking factor in a relational table ORDERS is 50 rows per block,
(iii) a relational table ORDERS contains information about 200 products,
(iv) a relational table ORDERS contains information about 100 prices per unit,
(v) a primary key is automatically indexed,
(vi) an attribute product is indexed,
(vii) all indexes are implemented as B*-trees with a fanout equal to 10,
(viii) a leaf level of an index on an attribute product consists of 30 data blocks,
(ix) a leaf level of an index on primary key consists of 200 data blocks,

For each one of the following queries briefly describe how the database system processes
each query and estimate the total number of read block operations needed to compute each
query. There is no need to perform the final computations. A correctly constructed formula
filled with the appropriate constants is completely sufficient.

(1) 1 mark
SELECT product
FROM ORDERS
WHERE product = 'bolt' OR quantity = 100;

A relational table ORDERS is sequentially read block by block. A condition quantity
= 100 is evaluated for each row in each data block read from a relational table.

1000

(2) 1 mark
SELECT count(*)
FROM ORDERS
WHERE product IN ('bolt', 'screw');

An index on an attribute product is vertically traversed twice and the sets of row
identifiers associated with each key in ('bolt', 'screw') are union. Next, a set of
row identifiers obtained after union is counted.

2 * (log10(200)+1)

(3) 1 mark
SELECT product, COUNT(*)
FROM ORDERS
GROUP BY product
HAVING count(*) > 5;

An index on an attribute product is horizontally traversed and the row identifiers
associated with each index key are counted. If a result of counting is less or equal 5 then a
key and a counter associated with it is ignored.

30

(4) 1 mark
SELECT order#, product, quality
FROM ORDERS
ORDER BY order#, product;

A relational table is sorted over order#, product and after sorting the values of
order#, product, quality are listed. Persistent storage sort can be used for
sorting. Persistent storage sort reads a table one time to partition it into a number of buckets.
Each time a bucket is read into a transient memory it is sorted there and later on written to
persistent storage. Then the buckets are simultaneously read from persistent storage and
merged into the final results. The results can be communicated to a user. Such algorithm
reads a table 2 times and it writes a table 1 time.

read: 2*1000
write: 1000

(5) 1 mark
SELECT *
FROM ORDERS
WHERE order# = 12345 AND product = 'bolt';

An index on the primary key order# is traversed vertically. When a key is found, one
block from a relational table is read and a condition product = 'bolt' is evaluated
in transient memory.

(log10(50*1000)+1) +1

(6) 1 mark
SELECT product
FROM ORDERS;
WHERE product = 'bolt' AND quantity = 100;

An index on an attribute product is vertically traversed and the sets of row identifiers
are used to get the rows from a relational table. A condition quantity = 100 is
evaluated on each row in a transient memory.

(log10(200)+1) + ((50*1000/200)+ (1000/200))/2

(7) 1 mark
SELECT product
FROM ORDERS;

An index on an attribute product is horizontally traversed.

30

(8) 1 mark
SELECT order#, product, quality
FROM ORDERS;

A relational table ORDERS is sequentially read block by block.

1000

(9) 1 mark
SELECT order#, product
FROM ORDERS;

A relational table ORDERS is sequentially read block by block.

1000

(10) 1 mark
SELECT order#
FROM ORDERS;

An index on the primary key order# is horizontally traversed.

200

Deliverables
A file solution1.pdf with the comprehensive descriptions of query processing plans
for each query and the estimations of the total number of read block operations needed to
process each query.

