
School of Computing and Information Technology University of Wollongong

SIM-2020-S3, Final Examination, CSCI317 Database Performance Tuning Page 1 of 8

Copyright SCIT, University of Wollongong, 2020

SCIT

School of Computing and

Information Technology

CSCI317
Database Performance Tuning
This paper is for students studying at the Singapore Institute of Management Pte Ltd.

 S3-2020 FINAL EXAMINATION
 Date: ???

 Time: ???

 Exam value: 40% of the subject assessment

Marks available: 40 marks
DIRECTIONS TO CANDIDATES

(1) The answers to the questions included in the final examination must be hand written with
a BLACK or DARK BLUE PEN on the WHITE PIECES of paper in A4 format. No pencil and
no other colour of paper is allowed.

(2) When finished, take the pictures of the hand-written solution, save the pictures in files (jpeg,

jpg, gif, bmp, png formats are all acceptable), and submit the files through Moodle.
Using mobile phone cameras is all right. It is possible to take more than one picture per answer to
assure the good readability of an answer. The marks will be deducted for submissions in the
different formats. No more than 20 files can be submitted and no more than 200Mbytes can be
submitted. Please well plan your pictures.

(3) The file must have the names indicating a number of the respective question in the final
examination paper like q1, q2, ... and q1-1, q1-2, ... when more than one picture is used for an
answer of a question. Marks will be deducted for the incorrect file names.

(4) All answers including the drawings must be hand written. No printed material will be evaluated.

(5) Marks will be deducted for the late submissions at a rate of 1 mark per 1 minute late.

Family Name ..

First Name ..

Student Number ..

Table Number ...

School of Computing and Information Technology University of Wollongong

SIM-2020-S3, Final Examination, CSCI317 Database Performance Tuning Page 2 of 8

Copyright SCIT, University of Wollongong, 2020

Introduction
The questions 2, 4, 5, and 6 of the examination paper are related to the following simplified
version of TPC-H benchmark database used in the laboratory classes.

CUSTOMER(
C_CUSTKEY NUMBER(12) NOT NULL,
C_NAME VARCHAR(25) NOT NULL,
C_ADDRESS VARCHAR(40) NOT NULL,
C_NATIONKEY NUMBER(12) NOT NULL,
C_ACCTBAL NUMBER(6) NOT NULL,
C_PHONE NUMBER(12) NOT NULL,
CONSTRAINT CUSTOMER_PKEY PRIMARY KEY(C_CUSTKEY));

PART(
P_PARTKEY NUMBER(12) NOT NULL,
P_NAME VARCHAR(55) NOT NULL,
P_BRAND CHAR(10) NOT NULL,
P_SIZE NUMBER(12) NOT NULL,
P_RETAILPRICE NUMBER(12,2) NOT NULL,
CONSTRAINT PART_PKEY PRIMARY KEY (P_PARTKEY));

PARTSUPP(
PS_PARTKEY NUMBER(12) NOT NULL,
PS_SUPPNAME VARCHAR(55) NOT NULL,
PS_AVAILQTY NUMBER(12) NOT NULL,
CONSTRAINT PARTSUPP_PKEY PRIMARY KEY (PS_PARTKEY,PS_SUPPNAME),
CONSTRAINT PARTSUPP_FKEY FOREIGN KEY(PS_PARTKEY)
 REFERENCES PART(P_PARTKEY));

ORDERS(
O_ORDERKEY NUMBER(12) NOT NULL,
O_CUSTKEY NUMBER(12) NOT NULL,
O_TOTALPRICE NUMBER(12,2) NOT NULL,
O_ORDERDATE DATE NOT NULL,
CONSTRAINT ORDERS_PKEY PRIMARY KEY (O_ORDERKEY),
CONSTRAINT ORDERS_FKEY1 FOREIGN KEY (O_CUSTKEY)
 REFERENCES CUSTOMER(C_CUSTKEY));

LINEITEM(
L_ORDERKEY NUMBER(12) NOT NULL,
L_PARTKEY NUMBER(12) NOT NULL,
L_LINENUMBER NUMBER(12) NOT NULL,
L_QUANTITY NUMBER(12,2) NOT NULL,
L_SHIPDATE DATE NOT NULL,
L_TAX NUMBER(4,2) NOT NULL,
 CONSTRAINT LINEITEM_PKEY PRIMARY KEY (L_ORDERKEY, L_LINENUMBER),
 CONSTRAINT LINEITEM_FKEY1 FOREIGN KEY (L_ORDERKEY)
 REFERENCES ORDERS(O_ORDERKEY),
 CONSTRAINT LINEITEM_FKEY2 FOREIGN KEY (L_PARTKEY)
 REFERENCES PART(P_PARTKEY));

Assume that, the relational tables listed above occupy the following amounts of disk storage:
CUSTOMER 100 Mbytes
PART 40 Mbytes
PARTSUPP 100 Mbytes
ORDERS 200 Mbytes
LINEITEM 700 Mbytes

School of Computing and Information Technology University of Wollongong

SIM-2020-S3, Final Examination, CSCI317 Database Performance Tuning Page 3 of 8

Copyright SCIT, University of Wollongong, 2020

Question 1 (7 marks)
The following conceptual schema represents a database domain where the drivers use the trucks for
the trips from city to city. We assume that a driver can make at most one trip per day. Each trip has an
objective, like for example delivery of the ordered items, collection of parcels to be delivered to another
place, etc. All other attributes are self-explanatory.

(1) Perform simplification of the conceptual schema above and re-draw the simplified conceptual

schema.
(2 marks)

(2) We would like to improve the performance of the following class of applications:

Find the first and the last names of drivers (attributes first-name, last-name in a class
DRIVER) who travelled between two given cities (attribute city-name in a class CITY) and used
a vehicle manufactured before a given date (attribute year-manufactured in a class TRUCK).

The following application belongs to the class of applications given above.

Find the first and the last names of drivers who travelled from Dapto to Sydney and used an old
vehicle manufactured before a year 2000.

Find the denormalizations of the simplified conceptual schema that improves the performance of
the class of applications described above. Re-draw the simplified conceptual schema after the
denormalizations.

(5 marks)

School of Computing and Information Technology University of Wollongong

SIM-2020-S3, Final Examination, CSCI317 Database Performance Tuning Page 4 of 8

Copyright SCIT, University of Wollongong, 2020

Question 2 (7 marks)
Consider the following fragment of query processing plan.

--
| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |
--
0	SELECT STATEMENT		317K	39M		17968 (1)	00:00:01
* 1	HASH JOIN		317K	39M		17968 (1)	00:00:01
* 2	TABLE ACCESS FULL	CUSTOMER	40091	430K		390 (1)	00:00:01
* 3	HASH JOIN RIGHT ANTI		317K	35M	3080K	17577 (1)	00:00:01
* 4	TABLE ACCESS FULL	LINEITEM	150K	1318K		12153 (1)	00:00:01
* 5	TABLE ACCESS FULL	ORDERS	450K	46M		2698 (1)	00:00:01
--
Predicate Information (identified by operation id):

 1 - access("O_CUSTKEY"="C_CUSTKEY")
 2 - filter("C_ACCTBAL">200)
 3 - access("O_ORDERKEY"="L_ORDERKEY")
 4 - filter("L_TAX">0.1)
 5 - filter("O_CUSTKEY">=0)

(1) Find and draw a syntax tree of the query processing plan listed above. To draw a syntax tree, use
the relational algebra operations (and NOT Oracle query processing plan operations) explained
during the lecture classes.

(3 marks)

(2) Discover and write SELECT statement that may have a query processing plan listed above.

(4 marks)

School of Computing and Information Technology University of Wollongong

SIM-2020-S3, Final Examination, CSCI317 Database Performance Tuning Page 5 of 8

Copyright SCIT, University of Wollongong, 2020

Question 3 (6 marks)
A relational table PARTSUPP contains information about the part supplied by suppliers.

PARTSUPP(supplier#, part#, quantity, shipdate)

A relational table PARTSUPP has a composite primary key (supplier#, part#, shipdate)

Assume that:

(i) a relational table PARTSUPP occupies 5000 data blocks,
(ii) a blocking factor in a relational table PARTSUP is 100 rows per block,
(iii) a relational table PARTSUPP contains information about 100 suppliers,
(iv) a relational table PARTSUPP contains information about 500 parts,
(v) a primary key is automatically indexed,
(vi) an attribute part# is indexed,
(vii) all indexes are implemented as B*-trees with a fanout equal to 20,
(viii) a leaf level of an index on attribute part# consists of 50 data blocks,
(ix) a leaf level of an index on primary key consists of 700 data blocks.

For each one of the following queries briefly describe how the database system processes each query
and estimate the total number of read block operations needed to compute each query.

 (1) SELECT quantity
 FROM PARTSUPP

WHERE supplier# = 7 AND part# = 1 AND shipdate ='01-DEC-2019';

(2) SELECT quantity
FROM PARTSUP
WHERE part# = 100 OR shipdate > '01-JAN-2020';

(3) SELECT part#, COUNT(*)
 FROM PARTSUPP
 GROUP BY part#;

(4) SELECT supplier#, part#, quantity

FROM PARTSUPP
ORDER BY supplier#, part#;

(5) SELECT COUNT(*)

FROM PARTSUP
WHERE quantity > 1000 AND shipdate > '01-JAN-2020';

(6) SELECT *
FROM PARTSUP
WHERE part# = 12345;

School of Computing and Information Technology University of Wollongong

SIM-2020-S3, Final Examination, CSCI317 Database Performance Tuning Page 6 of 8

Copyright SCIT, University of Wollongong, 2020

Question 4 (6 marks)
Consider the following SELECT statements.

(1) SELECT C_NATIONKEY, COUNT(*)

FROM CUSTOMER
GROUP BY C_NATIONKEY;

(2) SELECT C_NATIONKEY, C_ACCTBAL

FROM CUSTOMER
ORDER BY C_NATIONKEY, C_ACCTBAL

(3) SELECT COUNT(C_PHONE)
FROM CUSTOMER;

(4) SELECT C_NATIONKEY, SUM(C_ACCTBAL)
FROM CUSTOMER
GROUP BY C_NATIONKEY;

(5) SELECT *

FROM CUSTOMER
WHERE C_NATIONKEY = 12345 AND C_NAME = 'JAMES'

(6) SELECT C_NAME
FROM CUSTOMER
WHERE C_ACCTBAL =100;

(1) Find the smallest number of indexes that improve performance of all queries listed above.

(3 marks)

(2) For each query briefly explain how the indexes will be used to process a query.

(3 marks)

School of Computing and Information Technology University of Wollongong

SIM-2020-S3, Final Examination, CSCI317 Database Performance Tuning Page 7 of 8

Copyright SCIT, University of Wollongong, 2020

Question 5 (6 marks)
Consider the following SELECT statements.

(1) SELECT C_CUSTKEY

FROM CUSTOMER
WHERE (SELECT COUNT(*)
 FROM ORDERS
 WHERE ORDERS.O_CUSTKEY = CUSTOMER.C_CUSTKEY) > 10;

(2) SELECT DISTINCT (SELECT COUNT(*)

 FROM PART P
 WHERE P.P_BRAND = PART.P_BRAND) TOTAL, P_BRAND
FROM PART;

(3) CREATE INDEX IDX ON PART(P_NAME);

SELECT *
FROM PART
WHERE (UPPER(P_NAME) = 'BOLT' AND P_RETAILPRICE > 2) ;

DROP INDEX IDX;

(4) SELECT O_ORDERKEY, O_CUSTKEY

FROM ORDERS
WHERE O_TOTALPRICE > 10
 UNION
SELECT O_ORDERKEY, O_CUSTKEY
FROM ORDERS
WHERE O_TOTALPRICE < 5;

Find and write more efficient implementations of SELECT statements listed above.

School of Computing and Information Technology University of Wollongong

SIM-2020-S3, Final Examination, CSCI317 Database Performance Tuning Page 8 of 8

Copyright SCIT, University of Wollongong, 2020

Question 6 (8 marks)

Consider a fragment of simple JDBC application listed below. It is a typical example of a pretty poor,
from performance point of view, JDBC program. Rewrite a code written below to improve the
performance of the application it is included in. There is no need to write the entire JDBC application.

Explain all details why your version of JDBC code is more efficient than the original one.

ResultSet rset1 = stmt1.executeQuery(
 "SELECT P_PARTKEY FROM PART ORDER BY P_NAME");
long p_partkey = 0;
while (rset1.next())
{
 p_partkey = rset1.getInt(1);
 ResultSet rset2 = stmt2.executeQuery(
 "SELECT COUNT(*) FROM LINEITEM " +
 "WHERE L_PARTKEY = " + p_partkey);
 long total;
 while (rset2.next())
 {
 total = rset2.getInt(1);
 if (total >= 30)
 System.out.println(p_partkey + " " + total);
 }
}

End of Examination

