

ISIT312/ISIT912 Big Data Management

Spring 2023

HBase Design and Programming

In this practice, you will learn how to create HBase tables, how to load data, how to perform data
manipulations, and how to search HBase tables using HBase shell commands. You will also learn
how to use Java-based API to process HBase tables.

Warning: DO NOT attempt to copy the Linux commands in this document to your working Terminal,
because it is error-prone. Type those commands by yourself or use the scripts when available.

Laboratory Instructions.

(0) Start Hadoop
Start five Hadoop services (see instructions in the earlier laboratory classes).

(1) How to start HBase server ?
It is possible to start HBase server from Terminal in the following way:

$HBASE_HOME/bin/start-hbase.sh

In order to interact with HBase, three HBase services must be running: HMaster, HRegionServer and
HQuorumPeer. (If you run into an error when using HBase, always check whether all three services are
running.)

Troubleshooting. When working with HBase, if you see a message “ERROR: Can’t get master address
from ZooKeeper; znode data == null”, use “jps” check whether HMaster is exited (this may happen from
time to time). If HMaster is exited, re-process HBASE_HOME/bin/start-hbase.sh to re-start
HMaster.

(2) The HBase shell (command-line interface)
You can use the HBase command shell to interact with HBase. To use the shell, process the following
command in a Terminal window:

$HBASE_HOME/bin/hbase shell

To ask about help …

help

The command help returns a pretty comprehensive information about the HBase commands.

(3) Some useful HBase commands

Processing of a command version returns the following messages.

1.2.6, rUnknown, Mon May 29 02:25:32 CDT 2017

Processing of a command table_help returns information about table-reference commands (see
Appendix B in this document).

Command status returns the following message.

1 active master, 0 backup masters, 1 servers, 0 dead, 2.0000 average
load

Processing of a command whoami at the prompt returns the following message.

bigdata (auth:SIMPLE)
 groups: bigdata, adm, cdrom, sudo, dip, plugdev, lpadmin,
sambashare

(4) How to create a script file and how to process a script file (for HBase shell)?
To create HBase CLI script start gedit editor, type in the lines

status
whoami

and save a file as script.hb.

To process a script file type the following command at hbase prompt:

source('script.hb')

and press Enter key.

If you would like to process a script and save the results in a file then exit HBase CLI and in a Terminal
window process the following command.

$HBASE_HOME/bin/hbase shell < script.hb > report.rpt

The command starts HBase shall that reads input from a file script.hb and outputs the results into
a file report.rpt.

(5) How to design a HBase table ?
Consider the following conceptual schema.

We would like to implement a conceptual schema given above as a SINGLE HBase table. We shall
create four column families: STUDENT, SUBJECT, FILE, and SUBMISSION. We shall distribute the
rows over the column families in a way schematically presented below, which I would call as "a
relational implementation style". We shall concatenate the names of entity types with the values of
identifiers of entity instances and use it as the keys of rows in HBase table. The submitted files will be
represented as column qualifiers. It means that a column family FILE will have a variable number of
column qualifiers depending on the total number of submitted files.

 STUDENT SUBJECT SUBMISSION FILE
student:snumber1 xxxxxxxxxxx
student:snumber2 xxxxxxxxxxx
…
subject:code1 xxxxxxxxxxx
subject:code2 xxxxxxxxxxx
…
submission:skey1 xxx xxx xxxxxxxxxxx xxxxxx
submission:skey2 xxx xxx xxxxxxxxxxx xxx
…

where a submission skey-n consists of snumber-n|code-n|sub-number-n. The rows that
describe submissions spread over all column families. The total number of overlaps determines what
we call in the relational model as "denormalization" or simply speaking "redundancies" in HBase table.

(6) How to create a HBase table ?
To create an HBase table we must provide a name of a table and a name of at least one column family.
Process the following command to create HBase table COURSEWORK with a column family STUDENT.

create 'COURSEWORK', 'STUDENT'

To verify a structure of HBase table use describe command.

describe 'COURSEWORK'

(7) How add new column families to an existing HBase table ?
Next, we use alter command add a column family SUBJECT to HBase table COURSEWORK.

alter 'COURSEWORK', {NAME=>'SUBJECT', VERSIONS=>'1'}

In our design we plan to represent each entity type as a separate column family. To add the column
families FILE and SUBMISSION process the following commands.

alter 'COURSEWORK', {NAME=>'FILE', VERSIONS=>'2'}
alter 'COURSEWORK', {NAME=>'SUBMISSION', VERSIONS=>'1'}

Use describe command to verify the structures of HBase table COURSEWORK.

describe 'COURSEWORK'

(8) How to enter data into HBase table ?
It is possible to use a script dbload.hb available through Resources link on Moodle to process all
put commands listed in this section. However, if you do not want to process all put commands in
"one go" then it is still possible to use the script to copy/paste its individual sections.

First, we shall add few rows to a column family STUDENT. We shall use the values of attribute
snumber prefixed with a string 'student' as a keys of rows in HBase table. The following
commands add to a column family a row with key 'student:007', and the column qualifiers
snumber, fname, lname, degree, and put the values into cells of HBase table.

put 'COURSEWORK','student:007','STUDENT:snumber','007'
put 'COURSEWORK','student:007','STUDENT:first-name','James'
put 'COURSEWORK','student:007','STUDENT:last-name','Bond'
put 'COURSEWORK','student:007','STUDENT:degree','MIT'

To verify the insertions use scan command.

scan 'COURSEWORK'

A sequence of put commands implements an insertion of a single row with a key 'student:007'
into HBase table COURSEWORK.

Now, add all remaining data to a table COURSEWORK. The next sequence of put commands inserts
the next row into column family STUDENT.

put 'COURSEWORK','student:666','STUDENT:snumber','666'
put 'COURSEWORK','student:666','STUDENT:firstname','Harry'
put 'COURSEWORK','student:666','STUDENT:lastname','Potter'
put 'COURSEWORK','student:666','STUDENT:degree','BCS'

Next, we insert two rows into a column family SUBJECT.

put 'COURSEWORK','subject:312','SUBJECT:code','312'
put 'COURSEWORK','subject:312','SUBJECT:title','Big Data'
put 'COURSEWORK','subject:312','SUBJECT:credits','6'
put 'COURSEWORK','subject:313','SUBJECT:code','313'
put 'COURSEWORK','subject:313','SUBJECT:title','Very Big Data'
put 'COURSEWORK','subject:313','SUBJECT:credits','12'

Next, we insert information about a submission performed by one of the students enrolled
in one of the subjects.

put 'COURSEWORK','submission:007|312|1','SUBMISSION:sdate','01-APR-2017'
put 'COURSEWORK','submission:007|312|1','SUBMISSION:esignature','jb'

put 'COURSEWORK','submission:007|312|1','SUBMISSION:totalfiles','2'
put 'COURSEWORK','submission:007|312|1','SUBMISSION:dayslate','0'
put 'COURSEWORK','submission:007|312|1','STUDENT:snumbner','007'
put 'COURSEWORK','submission:007|312|1','SUBJECT:code','312'
put 'COURSEWORK','submission:007|312|1','FILE:fnumber1','path/file-name1-1'
put 'COURSEWORK','submission:007|312|1','FILE:fnumber2','path/file-name1-1'

Note, that a row with a key 'submission:007|312|1' contributes to column families
SUBMISSION, STUDENT, SUBJECT, FILE.

It is possible (but not necessary) to "de-normalise" the HBase table COURSEWORK by inserting the
values into the cells labelled with the column qualifiers in STUDENT and SUBJECT to the rows that
describe submissions. For example, the following commands add the first and the last name of a
student who performed a submission.

put 'COURSEWORK','submission:007|312|1','STUDENT:firstname','James'
put 'COURSEWORK','submission:007|312|1','STUDENT:lastname','Bond'

Verify a structure of HBase table after all additions.

describe 'COURSEWORK'

Add all remaining data.

put 'COURSEWORK','submission:007|313|1','SUBMISSION:sdate','02-APR-2017'
put 'COURSEWORK','submission:007|313|1','SUBMISSION:esignature','jb'
put 'COURSEWORK','submission:007|313|1','SUBMISSION:totalfiles','2'
put 'COURSEWORK','submission:007|313|1','SUBMISSION:dayslate','0'
put 'COURSEWORK','submission:007|313|1','SUBMISSION:type','project'
put 'COURSEWORK','submission:007|313|1','STUDENT:snumbner','007'
put 'COURSEWORK','submission:007|313|1','SUBJECT:code','313'
put 'COURSEWORK','submission:007|313|1','FILE:fnumber1','path/file-name3-1'
put 'COURSEWORK','submission:666|312|3','SUBMISSION:sdate','01-APR-2017'
put 'COURSEWORK','submission:666|312|3','SUBMISSION:esignature','hp'
put 'COURSEWORK','submission:666|312|3','SUBMISSION:totalfiles','2'
put 'COURSEWORK','submission:666|312|3','SUBMISSION:dayslate','0'
put 'COURSEWORK','submission:666|312|3','SUBMISSION:type','assignment'
put 'COURSEWORK','submission:666|312|3','STUDENT:snumbner','666'
put 'COURSEWORK','submission:666|312|3','SUBJECT:code','312'
put 'COURSEWORK','submission:666|312|3','FILE:fnumber1','path/file-name1-1'
put 'COURSEWORK','submission:666|312|3','FILE:fnumber2','path/file-name1-1'
put 'COURSEWORK','submission:666|312|4','SUBMISSION:sdate','02-APR-2017'
put 'COURSEWORK','submission:666|312|4','SUBMISSION:esignature','hp'
put 'COURSEWORK','submission:666|312|4','SUBMISSION:totalfiles','2'
put 'COURSEWORK','submission:666|312|4','SUBMISSION:dayslate','0'
put 'COURSEWORK','submission:666|312|4','SUBMISSION:type','assignment'
put 'COURSEWORK','submission:666|312|4','STUDENT:snumbner','666'
put 'COURSEWORK','submission:666|312|4','SUBJECT:code','312'
put 'COURSEWORK','submission:666|312|4','FILE:fnumber1','path/file-name2-1'
put 'COURSEWORK','submission:666|312|4','FILE:fnumber2','path/file-name2-2'
put 'COURSEWORK','submission:666|313|2','SUBMISSION:sdate','02-APR-2017'
put 'COURSEWORK','submission:666|313|2','SUBMISSION:esignature','hp'
put 'COURSEWORK','submission:666|313|2','SUBMISSION:totalfiles','2'
put 'COURSEWORK','submission:666|313|2','SUBMISSION:dayslate','0'
put 'COURSEWORK','submission:666|313|2','SUBMISSION:type','project'
put 'COURSEWORK','submission:666|313|2','STUDENT:snumbner','666'
put 'COURSEWORK','submission:666|313|2','SUBJECT:code','313'
put 'COURSEWORK','submission:666|313|2','FILE:fnumber1','path/file-name3-1'

(9) How to replace a row ?
To replace a row use put command in the following way. Note, that the replacements happens only
for the cells with one version allowed. If some cells allow for more than one version then instead of the
replacement a new version of a value in a cell is created.

put 'COURSEWORK','student:007','STUDENT:snumber','008'
scan 'COURSEWORK'

(10) How to retrieve a row and a cell ?
To retrieve a row we use a row key and a command get in the following way.

get 'COURSEWORK','student:007'

To retrieve the contents of a cell we have to provide a full address of a cell that consists of row key,
column family: column qualifier.

get 'COURSEWORK','student:007','STUDENT:snumber'

In the following way we can list up to 5 versions in a cell.

get 'COURSEWORK','student:007',{COLUMN=>'STUDENT:snumber',VERSIONS=>5}

(11) How to create a new version of a value in a cell ?
Assume that in one of existing submissions a student would like to submit a new version of a file
filenumber1. A new version can be created because a column family FILE was created with value
of parameter VERSIONS equal to 2 (see below). A new version is created by processing of the
following put command.

alter 'COURSEWORK', {NAME=>'FILE', VERSIONS=>'2'}

A new version is created by processing the following put command.

put 'COURSEWORK','submission:007|313|1','FILE:fnumber1','path/file-name3-3'

The results can be verified with get command.

get 'COURSEWORK','submission:007|313|1',{COLUMN=>'FILE:fnumber1',VERSIONS=>2}

(12) How to retrieve many rows from a given column family ?
A scan command is equivalent to an operation of projection in the relational data model. It can be
used to list the contents of entire HBase table, the contents of select column family, and the
contents of cells in a given column family and in a given column qualifier (see below).

scan 'COURSEWORK',{COLUMN=>'STUDENT'}

scan 'COURSEWORK',{COLUMN=>'STUDENT:first-name'}

(13) How to list the names of created HBase tables ?
A column list displays the names of HBase tables created so far.

list

(14) How to drop HBase table ?
To drop HBase table we have disable it first with a command disable

disable 'COURSEWORK'

and then we can drop it with drop command.

drop 'COURSEWORK'
If you have performed disable but not drop yet, you can process enable ‘COURSEWORK’ to
reverse disable and continue to work on the table.

(15) How to truncate HBase table ?
A command truncate can be used to delete the contents of HBASE table without changing its
internal structure. The command preserves all column families and column qualifiers within the
column families.

truncate 'COURSEWORK'

(16) How to exit HBase CLI (if you work with the HBase shell)?
To exit HBase CLI process at hbase main: ...:0> prompt a command exit.

exit

(17) How to use Java API to process HBase tables ? (optional)

Use Resources link to download ListTable.java from Moodle.

Use gedit editor and create a file ListTable.java with the following contents.

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.hadoop.hbase.HTableDescriptor;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.HBaseAdmin;

public class ListTables {
 public static void main(String[] args) throws Exception {
 Configuration conf = HBaseConfiguration.create();
 HBaseAdmin admin = new HBaseAdmin(conf);
// Get all the list of tables using HBaseAdmin object
 HTableDescriptor[] tableDescriptor = admin.listTables();

// Display the names of all tables
 System.out.println("HBase tables:");

 for (int i=0; i<tableDescriptor.length;i++){
 System.out.println(tableDescriptor[i].getNameAsString());}

 }
}

Assume your ListTables.java is on the Desktop. To compile ListTables.java and
execute the implemented listing table function, use the following commands.

cd /home/bigdata/Desktop
javac -classpath .:/usr/share/hbase/lib/* ListTables.java
java -cp .:/usr/share/hbase/lib/* ListTables

(18) How to use the remaining example of HBase Java API ? (optional)
The following simple examples of HBase Java API are available on Moodle.

Creating HBase table CreateTable.java
Inserting a row (cells) PutRow.java
Retrieving a row (cells) GetRow.java
Retrieving entire row with versions GetEntireRow.java
Scanning a table ScanTable.java
Deleting a row DelRow.java
Dropping a table DropTable.java

To compile and to process the remaining example of HBase Java API use javac and java
commands in the same way as for ListTables.java example (see yellow highlighted fragments
that should be replaced with the appropriate names).

(19) How to stop HBase
Process the following command to stop HBase

 $HBASE_HOME/bin/stop-hbase.sh

Appendix A
hbase(main):001:0> help
HBase Shell, version 1.2.6, rUnknown, Mon May 29 02:25:32 CDT 2017
Type 'help "COMMAND"', (e.g. 'help "get"' -- the quotes are necessary) for help on a specific command.
Commands are grouped. Type 'help "COMMAND_GROUP"', (e.g. 'help "general"') for help on a command group.

COMMAND GROUPS:
 Group name: general
 Commands: status, table_help, version, whoami

 Group name: ddl
 Commands: alter, alter_async, alter_status, create, describe, disable, disable_all, drop, drop_all, enable, enable_all,
exists, get_table, is_disabled, is_enabled, list, locate_region, show_filters

 Group name: namespace
 Commands: alter_namespace, create_namespace, describe_namespace, drop_namespace, list_namespace,
list_namespace_tables

 Group name: dml

 Commands: append, count, delete, deleteall, get, get_counter, get_splits, incr, put, scan, truncate,
truncate_preserve

 Group name: tools
 Commands: assign, balance_switch, balancer, balancer_enabled, catalogjanitor_enabled, catalogjanitor_run,
catalogjanitor_switch, close_region, compact, compact_rs, flush, major_compact, merge_region, move, normalize,
normalizer_enabled, normalizer_switch, split, trace, unassign, wal_roll, zk_dump

 Group name: replication
 Commands: add_peer, append_peer_tableCFs, disable_peer, disable_table_replication, enable_peer,
enable_table_replication, list_peers, list_replicated_tables, remove_peer, remove_peer_tableCFs,
set_peer_tableCFs, show_peer_tableCFs

 Group name: snapshots
 Commands: clone_snapshot, delete_all_snapshot, delete_snapshot, list_snapshots, restore_snapshot, snapshot

 Group name: configuration
 Commands: update_all_config, update_config

 Group name: quotas
 Commands: list_quotas, set_quota

 Group name: security
 Commands: grant, list_security_capabilities, revoke, user_permission

 Group name: procedures
 Commands: abort_procedure, list_procedures

 Group name: visibility labels
 Commands: add_labels, clear_auths, get_auths, list_labels, set_auths, set_visibility

SHELL USAGE:
Quote all names in HBase Shell such as table and column names. Commas delimit
command parameters. Type <RETURN> after entering a command to run it.
Dictionaries of configuration used in the creation and alteration of tables are
Ruby Hashes. They look like this:

 {'key1' => 'value1', 'key2' => 'value2', ...}

and are opened and closed with curley-braces. Key/values are delimited by the
'=>' character combination. Usually keys are predefined constants such as
NAME, VERSIONS, COMPRESSION, etc. Constants do not need to be quoted. Type
'Object.constants' to see a (messy) list of all constants in the environment.

If you are using binary keys or values and need to enter them in the shell, use
double-quote'd hexadecimal representation. For example:

 hbase> get 't1', "key\x03\x3f\xcd"
 hbase> get 't1', "key\003\023\011"
 hbase> put 't1', "test\xef\xff", 'f1:', "\x01\x33\x40"

The HBase shell is the (J)Ruby IRB with the above HBase-specific commands added.
For more on the HBase Shell, see http://hbase.apache.org/book.html

Appendix B
hbase(main):003:0> table_help
Help for table-reference commands.

You can either create a table via 'create' and then manipulate the table via commands like 'put', 'get', etc.
See the standard help information for how to use each of these commands.

However, as of 0.96, you can also get a reference to a table, on which you can invoke commands.
For instance, you can get create a table and keep around a reference to it via:

 hbase> t = create 't', 'cf'

Or, if you have already created the table, you can get a reference to it:

 hbase> t = get_table 't'

You can do things like call 'put' on the table:

 hbase> t.put 'r', 'cf:q', 'v'

which puts a row 'r' with column family 'cf', qualifier 'q' and value 'v' into table t.

To read the data out, you can scan the table:

 hbase> t.scan

which will read all the rows in table 't'.

Essentially, any command that takes a table name can also be done via table reference.
Other commands include things like: get, delete, deleteall,
get_all_columns, get_counter, count, incr. These functions, along with
the standard JRuby object methods are also available via tab completion.

For more information on how to use each of these commands, you can also just type:

 hbase> t.help 'scan'

which will output more information on how to use that command.

You can also do general admin actions directly on a table; things like enable, disable,
flush and drop just by typing:

 hbase> t.enable
 hbase> t.flush
 hbase> t.disable
 hbase> t.drop

Note that after dropping a table, your reference to it becomes useless and further usage
is undefined (and not recommended).

