

ISIT312/ISIT912 Big Data Management

Spring 2023

OLAP Operations in HQL

In this practice, you will learn how to use Hive HQL extensions for Data Warehousing. A laboratory
includes application of SELECT statement with GROUP BY clause, advanced features of GROUP
BY clause (ROLLUP, CUBE, GROUPING SETS), windowing and analytics functions.

Warning: DO NOT attempt to copy the Linux commands in this document to your working
Terminal, because it is error-prone. Type those commands by yourself.

Laboratory Instructions.

Prologue
(0) Start Hadoop and Hive

Start Hadoop services, and Hive Metastore and Hive Server 2 (see Laboratory@Week5).

(1) How to create and how to load data into an internal table ?
We shall use the default database for Hive table created, loaded, and used in this laboratory
exercise.
Create the following internal table to store information about items.

create table ORDERS(
 part char(7),
 customer varchar(30),
 amount decimal(8,2),
 oyear decimal(4),
 omonth decimal(2),
 oday decimal(2))

 row format delimited fields terminated by ','
 stored as textfile;

The table represents a three-dimensional data cube. A fact entity orders is described by a
measure amount. The dimensions include part, customer, and obviously
time(oyear,omonth,oday) dimension. There is a hierarchy over time dimension where
years consist of months and months consist of days.

Next create a text file orders.txt with sample data given below and save the file in a folder
where you plan to keep HQL scripts from this lab (you already started Hive Server 2 from this
folder).

bolt,James,200,2016,01,01
bolt,Peter,100,2017,01,30
bolt,Bob,300,2018,05,23
screw,James,20,2017,05,11
screw,Alice,55,2018,01,01
nut,Alice,23,2018,03,16
washer,James,45,2016,04,24

washer,Peter,100,2016,05,12
bolt,James,200,2018,01,05
bolt,Peter,100,2018,01,05

To load data into a table orders process the following load statement:

load data local inpath '.../orders.txt' into table orders;

Note, .../orders.txt refers to your path to the file. To verify the contents of a table orders
process the following select statement:

select *
from orders;

(2) How to perform a simple aggregation with group by and having clauses ?
We start from implementation of a query that finds the total number of orders per each part, i.e. we
perform aggregation along a dimension part. Process the following select statement:

select part, count(*)
from orders
group by part;

Next, we find the total amount summarized per each part. It is another aggregation along a
dimension part. Process the following select statement:

select part, sum(amount)
from orders
group by part;

Next, we find the total number of orders per customer and we list only the customers who submitted
more than one order. Process the following select statement:

select customer, count(*)
from orders
group by customer
having count(*) > 1;

Now, assume that we would like to find in one query the total number of orders per each part, per
each customer and per both part and customer. Process the following select statement:

select part, NULL, count(*)
from orders
group by part
union
select NULL, customer, count(*)
from orders
group by customer
union
select part, customer, count(*)
from orders
group by part, customer;

Implementation if a query given above is terribly inefficient. It is a perfect example of a very bad SQL.
To perform the aggregations a relational table orders is sequentially scanned three times. The
same aggregations can be computed in single scan through a relational table orders. A problem is,
how to syntactically express a query that performs three aggregations and a relational table
orders is used in from clause just one time.

(3) How to perform aggregations with rollup operator ?
Assume that we would like to perform aggregation over two dimensions, then over one of the two
dimensions used earlier and then aggregation over all rows in a table. For example, find the total
number of parts ordered and summarized per part and per customer, then per part and then total
number of all parts ordered. A sample solution given below is an example very inefficient
implementation of the aggregation.

select part, customer, sum(amount)
from orders
group by part, customer
union
select part, null, sum(amount)
from orders
group by part
union
select null, null, sum(amount)
from orders;

Implementation above is very inefficient because a relational table orders is sequentially read
three times. While, all summations over different dimensions can be computed in a single pass
through a relational table orders. A The same query can be implemented as a single select
statement with rollup operator in the following way:

select part, customer, sum(amount)
from orders
group by part, customer with rollup;

In the next example we use rollup operator to implement a query that finds the total
number of parts ordered and summarized per year and month, per year, and the total
number of parts ordered.

select oyear, omonth, sum(amount)
from orders
group by oyear,omonth with rollup;

(4) How to perform aggregation with cube operator ?
Assume that we would like to find an average number of parts ordered and summarized per part, per
customer, both per part and customer and an average number of parts per order. An implementation
that uses cube operator is given below.

select part, customer, avg(amount)
from orders
group by part, customer with cube;

It is possible to verify some of the results with the following queries:

select avg(amount)
from orders;

and

select part, avg(amount)
from orders
where part='bolt'
group by part;

(5) How to perform aggregations with grouping sets operator ?
Assume that we would like to find the total number of orders per part and per customer and both per
year and customer. A sample implementation of the query with grouping sets operator is the
following:

select part, customer, oyear, count(*)
from ORDERS
group by part, customer, oyear
grouping sets ((part),(customer), (oyear,customer));

In another example we find the total number of parts ordered and summarized per year, month, day,
per year and month, and per year, and the total number of parts ordered.

select oyear, omonth, oday, sum(amount)
from orders
group by oyear,omonth,oday grouping
sets((oyear,omonth,oday),(oyear,omonth), (oyear),());

Note that a query given above returns the same results as the following query with rollup
operator.

select oyear, omonth, oday, sum(amount)
from orders
group by oyear,omonth,oday with rollup;

Do you know how to implement a query with cube operator as a query with grouping sets
operator ?

(6) How to perform window based aggregations ?

It is possible to use group by clause of select statement to find the total number of ordered
parts summarized per each part.

select part, sum(amount)
from orders
group by part;

It is possible to get the similar result as from a query with group by clause with so called
windowing.

select part, SUM(amount) over (partition by part)

from orders;

bolt 900.00
bolt 900.00
bolt 900.00
bolt 900.00
bolt 900.00
nut 23.00
screw 75.00
screw 75.00
washer 145.00
washer 145.00

 To get the same results we have to use distinct keyword.

select distinct part, SUM(amount) over (partition by part)
from orders;

bolt 900.00
nut 23.00
screw 75.00
washer 145.00

Next, we use windowing to implement a query that finds for each part, for each customer, and for
each amount ordered by customer the largest total number of parts ordered and aggregated per part.

select part, customer, amount, MAX(amount) over (partition by part)
from orders;

bolt Peter 100.00 300.00
bolt James 200.00 300.00
bolt Bob 300.00 300.00
bolt Peter 100.00 300.00
bolt James 200.00 300.00
nut Alice 23.00 23.00
screw Alice 55.00 55.00
screw James 20.00 55.00
washer Peter 100.00 100.00
washer James 45.00 100.00

A table orders is partitioned (grouped by) the values in column part and for each part the largest
amount is found and added to each output row that consists of part, customer and amount.

It is possible to use more than one aggregation. For example, we can extend a query above with the
summarization of the amounts per each part in the following way:

select part, customer, amount,
 MAX(amount) over (partition by part),
 SUM(amount) over (partition by part)
from orders;

(7) How to perform window aggregations and window ordering ?
We start from a query that finds for each part an amount ordered and the total number of all parts
ordered. Such query can be implemented in the following way:

select part, amount, SUM(amount) over (partition by part)
from orders;

The results are the following.

bolt 100.00 900.00
bolt 200.00 900.00
bolt 300.00 900.00
bolt 100.00 900.00
bolt 200.00 900.00
nut 23.00 23.00
screw 55.00 75.00
screw 20.00 75.00
washer 100.00 145.00
washer 45.00 145.00

Now, we add a clause order by to windowing. Process the following statement:

select part, amount,
 SUM(amount) over (partition by part order by amount)
from orders;

bolt 100.00 200.00 |<-- 100+100
bolt 100.00 200.00 |<-- 100+100
bolt 200.00 600.00 |<-- 200+200
bolt 200.00 600.00 |<-- 200+200
bolt 300.00 900.00
nut 23.00 23.00
screw 20.00 20.00
screw 55.00 75.00
washer 45.00 45.00
washer 100.00 145.00

Addition of order by clause computes the increasing results of summarization over the amounts
and sorts the rows in each partition by the summarized amount. If two rows have the same values of
order by amount then the rows are treated as one row with summarized amount. For example
the first two rows have the same values of order by amount and because of that a value of
SUM(amount) = 100+100. The same applies to the next two rows. If two or more rows have
the same values of part and amount then summarization is performed in one step over all such rows.
This problem (if it is really a problem ?) can be solved with more selective order by key. For
example, the rows in each window can be ordered by amount, oyear, omonth, and oday.

select part,amount,
 SUM(amount) over (partition by part
 order by amount, oyear, omonth, oday)
from orders;

In this case the rows in each window are ordered by amount, oyear, omonth, oday and
summarization is performed in a row-by-row mode. The sample results are given below.

bolt 100.00 100.00 SUM(100)
bolt 100.00 200.00 SUM(100+100)
bolt 200.00 400.00 SUM(100+100+200)
bolt 200.00 600.00 SUM(100+100+200+200)
bolt 300.00 900.00 SUM(100+100+200+200+300)
nut 23.00 23.00 SUM(23)
screw 20.00 20.00 SUM(20)
screw 55.00 75.00 SUM(20+55)
washer 45.00 45.00 SUM(45)
washer 100.00 145.00 SUM(45+100)

To find how the ordered amounts of ordered parts changed year by year process the following
select statement:

select part, amount, oyear,
 SUM(amount) over (partition by part order by oyear)
from orders;

bolt 200.00 2016 200.00 SUM(200)
bolt 100.00 2017 300.00 SUM(200+100)
bolt 100.00 2018 900.00 SUM(200+100+100+200+300)
bolt 200.00 2018 900.00 SUM(200+100+100+200+300)
bolt 300.00 2018 900.00 SUM(200+100+100+200+300)
nut 23.00 2018 23.00 SUM(23)
screw 20.00 2017 20.00 SUM(20)
screw 55.00 2018 75.00 SUM(20+55)
washer 100.00 2016 145.00 SUM(100+45)
washer 45.00 2016 145.00 SUM(100+45)

Now, we change an aggregation function to AVG.

select part, amount, oyear
 AVG(amount) over(partition by part order by oyear)
from orders;

The statement finds so called walking average.

bolt 200.00 2016 200.000000 AVG(200)
bolt 100.00 2017 150.000000 AVG(200+100)
bolt 100.00 2018 180.000000 AVG(200+100+100+200+300)
bolt 200.00 2018 180.000000 AVG(200+100+100+200+300)
bolt 300.00 2018 180.000000 AVG(200+100+100+200+300)
nut 23.00 2018 23.000000 AVG(23)
screw 20.00 2017 20.000000 AVG(20)
screw 55.00 2018 37.500000 AVG(20+55)
washer 100.00 2016 72.500000 AVG(100+45)
washer 45.00 2016 72.500000 AVG(100+45)

(8) How to perform window aggregations and window framing ?
Next, implement a query that for each part and amount finds an average of amount ordered by year,
month and day. Process the following statement:

select part, amount,
 AVG(amount) over (partition by part
 order by oyear, omonth, oday)
from orders;

bolt 200.00 200.000000 AVG(200)
bolt 100.00 150.000000 AVG(200+100)
bolt 100.00 150.000000 AVG(200+100+100+200)
bolt 200.00 150.000000 AVG(200+100+100+200)
bolt 300.00 180.000000 AVG(200+100+100+200+300)
nut 23.00 23.000000 AVG(23)
screw 20.00 20.000000 AVG(20)
screw 55.00 37.500000 AVG(20+55)
washer 45.00 45.000000 AVG(45)
washer 100.00 72.500000 AVG(45+100)

Processing of aggregation (average) is performed over an expanding frame. At the beginning a frame
includes the first row, next the first row and the second row, next the first 3 rows, etc.

It is possible to create a fixed size frame smaller than a window. Process the following statement:

select part, amount,
 AVG(amount) over (partition by part
 order by oyear, omonth, oday
 rows 1 preceding)
from orders;

The statement finds for each part and amount an average amount of the current and previous one
amount when the amounts are sorted in time.

bolt 200.00 200.000000 AVG(200)
bolt 100.00 150.000000 AVG(200+100)
bolt 100.00 100.000000 AVG(100+100)
bolt 200.00 150.000000 AVG(100+200)
bolt 300.00 250.000000 AVG(200+300)
nut 23.00 23.000000 AVG(23)
screw 20.00 20.000000 AVG(20)
screw 55.00 37.500000 AVG(20+55)
washer 45.00 45.000000 AVG(45)
washer 100.00 72.500000 AVG(45+100)

Also, note that processing of the following statement:

select part, amount,
 AVG(amount) over (partition by part
 order by oyear, omonth, oday
 rows unbounded preceding)
from orders;

returns the same results as processing of:

select part, amount,
 AVG(amount) over (partition by part
 order by oyear, omonth, oday
 rows between unbounded preceding and current row)

from orders;

The options of window framing are the following.

(ROWS RANGE) BETWEEN (UNBOUNDED [num]) PRECEDING AND ([num] PRECEDING
CURRENT ROW (UNBOUNDED [num]) FOLLOWING)

For example:

ROWS BETWEEN 3 PRECEDING AND CURRENT ROW,
ROWS BETWEEN UNBOUNDED PRECEDING AND 2 FOLLOWING

(ROWS RANGE) BETWEEN CURRENT ROW AND (CURRENT ROW (UNBOUNDED [num])
FOLLOWING)

For example:

ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING

(ROWS RANGE) BETWEEN [num] FOLLOWING AND (UNBOUNDED [num]) FOLLOWING

For example:

ROWS BETWEEN 2 FOLLOWING AND UNBOUNDED FOLLOWING

(9) How to use window clause ?
It is possible to simplify syntax a bit with window clause (definition). Implement the following query:

select part, SUM(amount) over w
from orders
window w as (partition by part);

(10) How to use LEAD and LAG functions ?
LEAD and LAG functions allow to access the next and previous values in a column,
respectively. For example, we would like to find the current and the next amount for each
part ordered by year, month, day. Process the following statement:

select part, amount,
 LEAD(amount) over (partition by part
 order by oyear, omonth,oday)
from orders;

bolt 200.00 100.00
bolt 100.00 100.00
bolt 100.00 200.00
bolt 200.00 300.00
bolt 300.00
nut 23.00
screw 20.00 55.00
screw 55.00
washer 45.00 100.00
washer 100.00

Next, we would like to find the current and the previous amount for each part ordered by
year, month, day. Process the following statement:

select part, amount,
 LAG(amount) over (partition by part
 order by oyear, omonth, oday)
from orders;

bolt 200.00
bolt 100.00 200.00
bolt 100.00 100.00
bolt 200.00 100.00
bolt 300.00 200.00
nut 23.00
screw 20.00
screw 55.00 20.00
washer 45.00
washer 100.00 45.00

Next we subtract the previous row value from the current row value. Process the following
statement:

select part,amount,
 amount - LAG(amount) over(partition by part
 order by oyear, omonth, oday)
from orders;

bolt 200.00
bolt 100.00 -100.00
bolt 100.00 0.00
bolt 200.00 100.00
bolt 300.00 100.00
nut 23.00
screw 20.00
screw 55.00 35.00
washer 45.00
washer 100.00 55.00

Empty places (NULLs) can be eliminated with a parameter 0 in LAG function. Process the following
statement:

select part, amount,
 amount+lag(amount,1,0) over(partition by part
 order by oyear, omonth, oday)
from orders;

bolt 200.00 200.00
bolt 100.00 300.00
bolt 100.00 200.00
bolt 200.00 300.00
bolt 300.00 500.00
nut 23.00 23.00
screw 20.00 20.00

screw 55.00 75.00
washer 45.00 45.00
washer 100.00 145.00

(11) How to use analytic functions ?

Finally, we implement windowing with the analytic functions RANK(), DENSE_RANK(),
CUM_DIST(),

A function RANK() assigns a rank to row such that the rows with the same value of
amount are ranked with the same number and rank is increased by the total number of
rows with the same value. Process the following statement:

select part, amount,
 RANK() over (partition by part order by amount)
from orders;

bolt 100.00 1 RANK=1
bolt 100.00 1 RANK=1
bolt 200.00 3 RANK=1+2
bolt 200.00 3 RANK=1+2
bolt 300.00 5 RANK=3+2
nut 23.00 1
screw 20.00 1
screw 55.00 2
washer 45.00 1
washer 100.00 2

A function DENSE_RANK() assigns a rank to row such that the rows with the same value
of amount are ranked with the same number and rank is increased by 1 for each group of
rows with the same value of amount. Process the following statement:

select part, amount,
 DENSE_RANK() over (partition by part
 order by amount)
from orders;

bolt 100.00 1
bolt 100.00 1
bolt 200.00 2
bolt 200.00 2
bolt 300.00 3
nut 23.00 1
screw 20.00 1
screw 55.00 2
washer 45.00 1
washer 100.00 2

A function CUME_DIST() computes the relative position of a specified value in a group of
values. For a given row r, the CUME_DIST()the number of rows with values lower than or
equal to the value of r, divided by the number of rows being evaluated, i.e. entire window.
Process the following statement:

select part, amount,

 CUME_DIST() over (partition by part
 order by amount)
from orders;

bolt 100.00 0.4 2 rows/5
bolt 100.00 0.4 2 rows/5
bolt 200.00 0.8 4 rows/5
bolt 200.00 0.8 4 rows/5
bolt 300.00 1.0 5 rows/5
nut 23.00 1.0
screw 20.00 0.5
screw 55.00 1.0
washer 45.00 0.5
washer 100.00 1.0

A function PERCENT_RANK() is similar to a function CUME_DIST(). For a row r,
PERCENT_RANK() calculates the rank of r minus 1, divided by the number of rows being
evaluated -1 , i.e. entire window-1. Process the following statement:

select part, amount,
 PERCENT_RANK() over (partition by part
 order by amount)
from orders;

bolt 100.00 0.0
bolt 100.00 0.0
bolt 200.00 0.5
bolt 200.00 0.5
bolt 300.00 1.0
nut 23.00 0.0
screw 20.00 0.0
screw 55.00 1.0
washer 45.00 0.0
washer 100.00 1.0

A function NTILE(k) divides a window into a number of buckets indicated by k and
assigns the appropriate bucket number to each row. The buckets are numbered from 1 to k.
Process the following statement:

select part, amount,
 NTILE(2) over (partition by part
 order by amount)
from orders;

bolt 100.00 1
bolt 100.00 1
bolt 200.00 1
bolt 200.00 2
bolt 300.00 2
nut 23.00 1
screw 20.00 1
screw 55.00 2
washer 45.00 1
washer 100.00 2

select part, amount,
 NTILE(5) over (partition by part
 order by amount)
from orders;

bolt 100.00 1
bolt 100.00 2
bolt 200.00 3
bolt 200.00 4
bolt 300.00 5
nut 23.00 1
screw 20.00 1
screw 55.00 2
washer 45.00 1
washer 100.00 2

Finally, a function ROW_NUMBER does not need any explanations. Process the following
statement:

select part, amount,
 ROW_NUMBER() over (partition by part
 order by amount)
from orders;

bolt 100.00 1
bolt 100.00 2
bolt 200.00 3
bolt 200.00 4
bolt 300.00 5
nut 23.00 1
screw 20.00 1
screw 55.00 2
washer 45.00 1
washer 100.00 2

