
ISIT312/ISIT912 Big Data Management

Spring 2023

Spark Practice I
In this practice, you will perform basic operations and develop basic data processing applications in
Spark.

Warning: DO NOT attempt to copy the Linux commands in this document to your working Terminal,
because it is error-prone. Type those commands by yourself.

Laboratory Instructions.

(0) Start Hadoop services

Start the five Hadoop services in a Terminal window and start Zeppelin (if you use Zeppelin).

(1) How to start and interact with Spark in the Shark Shell?

There are two ways to interact with Spark: the Spark shell and Zeppelin.

To start the Spark shell, process the following command in a Terminal window (not Zeppelin):

$SPARK_HOME/bin/spark-shell --master local[*]

The above will run Spark in a local mode with a standalone cluster manager. (The * symbol means using
multiple threads in the VM to process a Spark job.) You can also run it in a pseudo-distributed mode with
YARN as the cluster manager, by processing:

$SPARK_HOME/bin/spark-shell --master yarn

See the lecture note for more information about the two modes. Recommendation: Use the local mode for
better efficiency.

Spark-shell runs on top of the Scala REPL. To quit Scala REPL, type

:quit

If you use Zeppelin as the default interface to Spark, you need to specify the Spark interpreter %spark at
the first line of your Scala commands. For example, process the following:

%spark
spark

You will see:

res0: org.apache.spark.sql.SparkSession =
org.apache.spark.sql.SparkSession@xxxxxx

Here a SparkSession instance named spark is the entry points to your Spark application.

IMPORTANT: Do NOT use the Spark shell and Zeppelin’s %spark AT THE SAME TIME; just use
either one of the two.

(2) Create and process DataFrames, and retrieve data from DataFrames

To create a simple DataFrame, process

val myRange0 = spark.range(20).toDF("number")
myRange0.show()
val myRange1 = spark.range(18).toDF("number")
myRange1.show()
myRange0.except(myRange1).show()

You can also create a DataFrame on the data in HDFS. First, load the file README.txt in $SPARK_HOME
to HDFS in, say, /user/bigdata. Then read it into a DataFrame:

val text = spark.read.textFile("/user/bigdata/README.txt")
text.count()
text.first()

The following command counts how many lines contain the word "Spark":

text.filter(line => line.contains("Spark")).count()

The following command gets the length of the longest line:

text.map(line => line.split(" ").size).reduce((a, b) => if (a > b) a else b)

The following command implements a (naïve) word count application:

val wordCounts = text.flatMap(line => line.split(" ")).

groupByKey(identity).count()
wordCounts.show()

 (3) DataFrame/Dataset transformations and actions

Use a link Resources to download the files people.json, people.txt and employees.json
from Moodle. Create a folder week10 on HDFS and upload the files people.json, people.txt to
HDFS into a folder /user/bigdata/week10.

Process the following DataFrame/Dataset operations in Spark-shell:

// read a json file into a dataframe
val df = spark.read.json("/user/bigdata/week10/people.json")
df.show()
df.printSchema()

//some basic relational operations
df.select($"name", $"age" +1).show()
df.filter($"age" > 21).show()
df.groupBy("age").count().show()
df.createOrReplaceTempView("people")
val sqlDF = spark.sql("select * from people")
sqlDF.show()

//create a Dataset
case class Person(name: String, age: Long)
val ccDS = Seq(Person("Andy", 32)).toDS()
ccDS.show()
ccDS.select($"name").show()

// another way to create DataFrame
val peopleDF = spark.sparkContext.
 textFile("/user/bigdata/week10/people.txt").
 map(_.split(",")).
 map(attributes => Person(attributes(0), attributes(1).trim.toInt)).
 toDF()
peopleDF.show()

// convert DataFrame to Dataset
case class Employee(name: String, salary: Long)
val ds = spark.read.
 json("/user/bigdata/week10/employees.json").as[Employee]

(4) Implementation and processing of a self-contained application

In the following example, we implement a self-contained application and we submit it as a Spark job. Open
a new document in Text Editor, input the following code and save it as SimpleApp.scala.

import org.apache.spark.sql.SparkSession
object SimpleApp {
 def main(args: Array[String]) {
 val text = "<YOUR_HDFS_PATH>/README.md"
 val spark = SparkSession.builder
 .appName("Simple Application")
 .config("spark.master", "local[*]")
 .getOrCreate()
 val data = spark.read.textFile(text).cache()
 val numAs = data.filter(line => line.contains("a")).count()
 val numBs = data.filter(line => line.contains("b")).count()
 spark.sparkContext.setLogLevel("ERROR")
 println(s"Lines with a: $numAs, Lines with b: $numBs")
 spark.stop()
 }
}

Use Terminal or %sh interpreter on Zeppelin to compile an application SimpleApp.scala in the
following way:

scalac -classpath "$SPARK_HOME/jars/*" SimpleApp.scala

Then create a jar file in the following way:

jar cvf app.jar SimpleApp*.class

Quit Spark Shell or stop Zeppelin before you submit it to Spark.

Use Terminal to process the application in the following way:

$SPARK_HOME/bin/spark-submit --master local[*] --class SimpleApp app.jar

The output is:

Lines with a: 62, Lines with b: 30

(5) Shakespeare wordcount exercise

Complete the following exercise (a sample solution will be released on Moodle later):

Use Resources on link on Moodle to download the datasets shakespeare.txt, and stop-word-
list.csv.

An objective of the exercise is to count the frequent words used by William Shakespeare in a file
shakespeare.txt but remove the known English stops words (such as "the”, “and” and “a”) available
stop-word-list.csv. Return top 20 most frequent non-stop words in Shakespeare’s works.

The first few lines of code are provided:

val shakes = spark.read.textFile("<your path>/shakespeare.txt")
val swlist = spark.read.textFile("<your path>/stop-word-list.csv")
val shakeswords = shakes.

flatMap(x => x.split("\\W+")).
map(_.toLowerCase.trim).
filter(_.length>0)

shakeswords.createOrReplaceTempView("shakeswords")
val stopwords = swlist.flatMap(x=>x.split(",")).map(_.trim)
stopwords.createOrReplaceTempView("stopwords")

// your Scala code goes here...//

A hint is to create views that can be accessed with Spark SQL and of course … use SQL.

The final output is as follows:

result.show(20)
+-----+-----+
|value|count|
+-----+-----+
d	8608
s	7264
thou	5443
thy	3812
shall	3608
thee	3104
o	3050
good	2888
now	2805
lord	2747
come	2567
sir	2543
ll	2480
here	2366
more	2293
well	2280

love	2010
man	1987
hath	1917
know	1763
+-----+-----+
only showing top 20 rows

