ISIT312/ISIT912 Big Data Management
Spring 2023
Spark Practice I

In this practice, you will perform basic operations and develop basic data processing applications in
Spark.

Warning: DO NOT attempt to copy the Linux commands in this document to your working Terminal,
because it is error-prone. Type those commands by yourself.

Laboratory Instructions.

(0) Start Hadoop services

Start the five Hadoop services in a Terminal window and start Zeppelin (if you use Zeppelin).

(1) How to start and interact with Spark in the Shark Shell?
There are two ways to interact with Spark: the Spark shell and Zeppelin.

To start the Spark shell, process the following command in a Terminal window (not Zeppelin):

$SPARK HOME/bin/spark-shell --master locall[*]

The above will run Spark in a local mode with a standalone cluster manager. (The * symbol means using
multiple threads in the VM to process a Spark job.) You can also run it in a pseudo-distributed mode with
YARN as the cluster manager, by processing:

$SPARK HOME/bin/spark-shell --master yarn

See the lecture note for more information about the two modes. Recommendation: Use the local mode for
better efficiency.

Spark-shell runs on top of the Scala REPL. To quit Scala REPL, type
rquit

If you use Zeppelin as the default interface to Spark, you need to specify the Spark interpreter $spark at
the first line of your Scala commands. For example, process the following:

%spark
spark

You will see:

res0: org.apache.spark.sqgl.SparkSession =
org.apache.spark.sgl.SparkSession@xxxxxx

Here a SparkSession instance named spark is the entry points to your Spark application.

IMPORTANT: Do NOT use the Spark shell and Zeppelin’s %spark AT THE SAME TIME; just use
either one of the two.




(2) Create and process DataFrames, and retrieve data from DataFrames
To create a simple DataFrame, process

val myRange(O =
myRange(.show ()
val myRangel =
myRangel.show ()
myRange0.except (myRangel) . show ()

spark.range (20) . toDF ("number")

spark.range (18) .toDF ("number")

You can also create a DataFrame on the data in HDFS. First, load the file README . txt in SSPARK HOME
to HDFS in, say, /user/bigdata. Then read itinto a DataFrame:

val text = spark.read.textFile("/user/bigdata/README.txt")
text.count ()
text.first ()

The following command counts how many lines contain the word "Spark":

text.filter(line => line.contains("Spark")) .count ()

The following command gets the length of the longest line:
text.map(line => line.split (" ").size).reduce((a, b) => if (a > b) a else b)
The following command implements a (naive) word count application:

val wordCounts = text.flatMap(line => line.split(" ")).
groupByKey (identity) .count ()
wordCounts.show ()

(3) DataFrame/Dataset transformations and actions

Use a link Resources to download the files people.json, people.txt and employees. json
from Moodle. Create a folder week10 on HDFS and upload the files people. json, people.txt to
HDFS into a folder /user/bigdata/week10.

Process the following DataFrame/Dataset operations in Spark-shell:

// read a json file into a dataframe

val df = spark.read.json("/user/bigdata/weekl0/people.json")
df.show ()

df .printSchema ()

//some basic relational operations

df.select ($"name", S$"age" +1 ) .show()
df.filter ($"age" > 21) .show()
df.groupBy ("age") .count () . show ()
df.createOrReplaceTempView ("people")

val sglDF = spark.sgl("select * from people")
sglDF. show ()



//create a Dataset

case class Person(name: String, age: Long)
val ccDS = Seqg(Person ("Andy", 32)) .toDS()
ccDS.show ()

ccDS.select ($"name") .show ()

// another way to create DataFrame
val peopleDF = spark.sparkContext.
textFile ("/user/bigdata/weekl0/people.txt") .
map(_ .split(",")).
map (attributes => Person(attributes(0), attributes(l).trim.tolInt)).
toDF ()

peopleDF.show ()

// convert DataFrame to Dataset
case class Employee(name: String, salary: Long)
val ds = spark.read.
json ("/user/bigdata/weekl0/employees.json") .as[Employee]

(4) Implementation and processing of a self-contained application

In the following example, we implement a self-contained application and we submit it as a Spark job. Open
a new document in Text Editor, input the following code and save it as SimpleApp.scala.

import org.apache.spark.sql.SparkSession
object SimpleApp {
def main (args: Array[String]) {
val text = "<YOUR_HDFS_PATH>/README.md"
val spark = SparkSession.builder
.appName ("Simple Application")
.config("spark.master", "local[*]")

.getOrCreate ()
val data = spark.read.textFile (text) .cache()
val numAs = data.filter(line => line.contains ("a")) .count ()
val numBs = data.filter(line => line.contains ("b")) .count ()

spark.sparkContext.setLogLevel ("ERROR")
println(s"Lines with a: $numAs, Lines with b: S$SnumBs")
spark.stop ()

Use Terminal or $sh interpreter on Zeppelin to compile an application SimpleApp.scala inthe
following way:

scalac -classpath "SSPARK HOME/jars/*" SimpleApp.scala
Then create a jar file in the following way:

jar cvf app.jar SimpleApp*.class

Quit Spark Shell or stop Zeppelin before you submit it to Spark.

Use Terminal to process the application in the following way:

$SPARK HOME/bin/spark-submit --master local[*] --class SimpleApp app.jar



The output is:

Lines with a: 62, Lines with b: 30

(5) Shakespeare wordcount exercise

Complete the following exercise (a sample solution will be released on Moodle later):

Use Resources on link on Moodle to download the datasets shakespeare.txt, and stop-word-
list.csv.

An objective of the exercise is to count the frequent words used by William Shakespeare in a file
shakespeare. txt but remove the known English stops words (such as "the”, “and” and “a”) available
stop-word-1ist.csv. Return top 20 most frequent non-stop words in Shakespeare’s works.

The first few lines of code are provided:

val shakes = spark.read.textFile ("<your path>/shakespeare.txt")
val swlist = spark.read.textFile ("<your path>/stop-word-list.csv")
val shakeswords = shakes.

flatMap (x => x.split ("\\W+")).

map( .toLowerCase.trim).

filter( .length>0)

shakeswords.createOrReplaceTempView ("shakeswords™)

val stopwords = swlist.flatMap (x=>x.split(",")) .map( .trim)
stopwords.createOrReplaceTempView ("stopwords")

// your Scala code goes here...//

A hint is to create views that can be accessed with Spark SQL and of course ... use SQL.

The final output is as follows:

result.show (20)

+————= +————- +
| value | count |
+————= +————- +
| d| 8608
| s| 7264
| thoul| 5443]
| thyl| 3812]
|shall| 3608]
| thee| 3104
| ol 3050
| good| 2888]
| now| 2805|
| lord| 2747]
| come| 2567]
| sir| 2543
| 11| 2480
| here| 2366]
| more| 2293]
|

well] 2280



love]| 2010]

|

| man| 1987]
| hath| 1917]
| know| 1763]
fo———- fo———= +

only showing top 20 rows




